Convergence Analysis of Spectral Collocation Methods for a Singular Differential Equation
暂无分享,去创建一个
[1] Heping Ma,et al. Error analysis for solving the Korteweg‐de Vries equation by a Legendre pseudo‐spectral method , 2000 .
[2] Seymour V. Parter,et al. Preconditioning Chebyshev Spectral Collocation by Finite-Difference Operators , 1997 .
[3] Andreas Karageorghis,et al. A spectral domain decomposition approach for steady Navier-Stokes problems in circular geometries , 1996 .
[4] Christine Bernardi,et al. Properties of some weighted Sobolev spaces and application to spectral approximations , 1989 .
[5] Weiwei Sun,et al. A Legendre-Petrov-Galerkin and Chebyshev Collocation Method for Third-Order Differential Equations , 2000, SIAM J. Numer. Anal..
[6] V. G. Priymak. Pseudospectral Algorithms for Navier-Stokes Simulation of Turbulent Flows in Cylindrical Geometry with Coordinate Singularities , 1995 .
[7] Ivo Babuska,et al. The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..
[8] W. T. M. Verkley. A spectral model for two-dimensional incompressible fluid flow in a circular basin II. Numerical examples , 1997 .
[9] Philippe G. Ciarlet,et al. Techniques of scientific computing (Part 2) , 1997 .
[10] Guo Ben-yu,et al. The Chebyshev spectral method for Burgers-like equations , 1988 .
[11] Weizhang Huang,et al. Pole condition for singular problems: the pseudospectral approximation , 1993 .
[12] Philip S. Marcus,et al. A Spectral Method for Polar Coordinates , 1995 .
[13] Bengt Fornberg,et al. A Pseudospectral Approach for Polar and Spherical Geometries , 1995, SIAM J. Sci. Comput..
[14] Jie Shen,et al. Efficient Spectral-Galerkin Methods III: Polar and Cylindrical Geometries , 1997, SIAM J. Sci. Comput..
[15] Monique Dauge,et al. Spectral Methods for Axisymmetric Domains , 1999 .
[16] V. G. Priymak,et al. Accurate Navier-Stokes Investigation of Transitional and Turbulent Flows in a Circular Pipe , 1998 .
[17] W. Heinrichs,et al. Spectral collocation methods and polar coordinate singularities , 1991 .
[18] Jie Shen,et al. Efficient Spectral-Galerkin Methods IV. Spherical Geometries , 1999, SIAM J. Sci. Comput..
[19] Weiwei Sun,et al. Optimal Error Estimates of the Legendre-Petrov-Galerkin Method for the Korteweg-de Vries Equation , 2001, SIAM J. Numer. Anal..
[20] C. Canuto. Spectral methods in fluid dynamics , 1991 .
[21] D. Gottlieb,et al. Numerical analysis of spectral methods : theory and applications , 1977 .
[22] W. Verkley,et al. A Spectral Model for Two-Dimensional Incompressible Fluid Flow in a Circular Basin , 1997 .
[23] I Babuska,et al. The p and h-p Versions of the Finite Element Method; State of the Art. , 1986 .
[24] Weizhang Huang,et al. Pseudospectral solutions for steady motion of a viscous fluid inside a circular boundary , 2000 .
[25] Evangelos A. Coutsias,et al. Pseudospectral Solution of the Two-Dimensional Navier-Stokes Equations in a Disk , 1999, SIAM J. Sci. Comput..
[26] Yvon Maday,et al. Polynomial interpolation results in Sobolev spaces , 1992 .
[27] Steven A. Orszag,et al. Fourier Series on Spheres , 1974 .