Convergence Analysis of Spectral Collocation Methods for a Singular Differential Equation

Solutions of partial differential equations with coordinate singularities often have special behavior near the singularities, which forces them to be smooth. Special treatment for these coordinate singularities is necessary in spectral approximations in order to avoid degradation of accuracy and efficiency. It has been observed numerically in the past that, for a scheme to attain high accuracy, it is unnecessary to impose all the pole conditions, the constraints representing the special solution behavior near singularities. In this paper we provide a theoretical justification for this observation. Specifically, we consider an existing approach, which uses a pole condition as the boundary condition at a singularity and solves the reformulated boundary value problem with a commonly used Gauss--Lobatto collocation scheme. Spectral convergence of the Legendre and Chebyshev collocation methods is obtained for a singular differential equation arising from polar and cylindrical geometries.

[1]  Heping Ma,et al.  Error analysis for solving the Korteweg‐de Vries equation by a Legendre pseudo‐spectral method , 2000 .

[2]  Seymour V. Parter,et al.  Preconditioning Chebyshev Spectral Collocation by Finite-Difference Operators , 1997 .

[3]  Andreas Karageorghis,et al.  A spectral domain decomposition approach for steady Navier-Stokes problems in circular geometries , 1996 .

[4]  Christine Bernardi,et al.  Properties of some weighted Sobolev spaces and application to spectral approximations , 1989 .

[5]  Weiwei Sun,et al.  A Legendre-Petrov-Galerkin and Chebyshev Collocation Method for Third-Order Differential Equations , 2000, SIAM J. Numer. Anal..

[6]  V. G. Priymak Pseudospectral Algorithms for Navier-Stokes Simulation of Turbulent Flows in Cylindrical Geometry with Coordinate Singularities , 1995 .

[7]  Ivo Babuska,et al.  The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..

[8]  W. T. M. Verkley A spectral model for two-dimensional incompressible fluid flow in a circular basin II. Numerical examples , 1997 .

[9]  Philippe G. Ciarlet,et al.  Techniques of scientific computing (Part 2) , 1997 .

[10]  Guo Ben-yu,et al.  The Chebyshev spectral method for Burgers-like equations , 1988 .

[11]  Weizhang Huang,et al.  Pole condition for singular problems: the pseudospectral approximation , 1993 .

[12]  Philip S. Marcus,et al.  A Spectral Method for Polar Coordinates , 1995 .

[13]  Bengt Fornberg,et al.  A Pseudospectral Approach for Polar and Spherical Geometries , 1995, SIAM J. Sci. Comput..

[14]  Jie Shen,et al.  Efficient Spectral-Galerkin Methods III: Polar and Cylindrical Geometries , 1997, SIAM J. Sci. Comput..

[15]  Monique Dauge,et al.  Spectral Methods for Axisymmetric Domains , 1999 .

[16]  V. G. Priymak,et al.  Accurate Navier-Stokes Investigation of Transitional and Turbulent Flows in a Circular Pipe , 1998 .

[17]  W. Heinrichs,et al.  Spectral collocation methods and polar coordinate singularities , 1991 .

[18]  Jie Shen,et al.  Efficient Spectral-Galerkin Methods IV. Spherical Geometries , 1999, SIAM J. Sci. Comput..

[19]  Weiwei Sun,et al.  Optimal Error Estimates of the Legendre-Petrov-Galerkin Method for the Korteweg-de Vries Equation , 2001, SIAM J. Numer. Anal..

[20]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[21]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[22]  W. Verkley,et al.  A Spectral Model for Two-Dimensional Incompressible Fluid Flow in a Circular Basin , 1997 .

[23]  I Babuska,et al.  The p and h-p Versions of the Finite Element Method; State of the Art. , 1986 .

[24]  Weizhang Huang,et al.  Pseudospectral solutions for steady motion of a viscous fluid inside a circular boundary , 2000 .

[25]  Evangelos A. Coutsias,et al.  Pseudospectral Solution of the Two-Dimensional Navier-Stokes Equations in a Disk , 1999, SIAM J. Sci. Comput..

[26]  Yvon Maday,et al.  Polynomial interpolation results in Sobolev spaces , 1992 .

[27]  Steven A. Orszag,et al.  Fourier Series on Spheres , 1974 .