A systematic review of key challenges of CO2 transport via pipelines

Abstract Transport of carbon dioxide (CO2) via pipeline from the point of capture to a geologically suitable location for either sequestration or enhanced hydrocarbon recovery is a vital aspect of the carbon capture and storage (CCS) chain. This means of CO2 transport has a number of advantages over other means of CO2 transport, such as truck, rail, and ship. Pipelines ensure continuous transport of CO2 from the capture point to the storage site, which is essential to transport the amount of CO2 captured from the source facilities, such as fossil fuel power plants, operating in a continuous manner. Furthermore, using pipelines is regarded as more economical than other means of CO2 transport The greatest challenges of CO2 transport via pipelines are related to integrity, flow assurance, capital and operating costs, and health, safety and environmental factors. Deployment of CCS pipeline projects is based either on point-to-point transport, in which case a specific source matches a specific storage point, or through the development of pipeline networks with a backbone CO2 pipeline. In the latter case, the CO2 streams, which are characterised by a varying impurity level and handled by the individual operators, are linked to the backbone CO2 pipeline for further compression and transport. This may pose some additional challenges. This review involves a systematic evaluation of various challenges that delay the deployment of CO2 pipeline transport and is based on an extensive survey of the literature. It is aimed at confidence-building in the technology and improving economics in the long run. Moreover, the knowledge gaps were identified, including lack of analyses on a holistic assessment of component impurities, corrosion consideration at the conceptual stage, the effect of elevation on CO2 dense phase characteristics, permissible water levels in liquefied CO2, and commercial risks associated with project abandonment or cancellation resulting from high project capital and operating costs.

[1]  Roland Span,et al.  Accurate Thermodynamic-Property Models for CO2-Rich Mixtures , 2013 .

[2]  Eric Williams,et al.  Potential economies of scale in CO2 transport through use of a trunk pipeline , 2010 .

[3]  Kamal K. Botros,et al.  Pipeline Pumping and Compression Systems: A Practical Approach , 2008 .

[4]  Sytze Huizinga,et al.  Materials Selection and Corrosion Control for a CO 2 Transport and Injection System , 2013 .

[5]  Keith George,et al.  ELECTROCHEMICAL INVESTIGATION AND MODELING OF CARBON DIOXIDE CORROSION OF CARBON STEEL IN THE PRESENCE OF ACETIC ACID , 2004 .

[6]  Jennifer L. Lewicki,et al.  Natural and industrial analogues for leakage of CO2 from storage reservoirs: identification of features, events, and processes and lessons learned , 2007 .

[7]  Sally M. Benson,et al.  Carbon Dioxide Capture and Storage , 2008 .

[8]  Moses O. Tadé,et al.  The importance of ground temperature to a liquid carbon dioxide pipeline , 2015 .

[9]  J. Barrie,et al.  Carbon dioxide pipelines: A preliminary review of design and risks , 2005 .

[10]  D. Sinton,et al.  Determination of dew point conditions for CO2 with impurities using microfluidics. , 2014, Environmental science & technology.

[11]  Julia Race,et al.  Transporting the Next Generation of CO2 for Carbon, Capture and Storage: The Impact of Impurities on Supercritical CO2 Pipelines , 2008 .

[12]  H. Herzog,et al.  Carbon Capture and Storage from Fossil Fuel Use , 2004 .

[13]  Kristian Lindgren,et al.  Carbon Capture and Storage From Fossil Fuels and Biomass – Costs and Potential Role in Stabilizing the Atmosphere , 2006 .

[14]  C.R.F. Azevedo,et al.  Failure analysis of a crude oil pipeline , 2007 .

[15]  Fariba Dehghani,et al.  Vapor-liquid equilibrium for binary systems of carbon dioxide + methanol, hydrogen + methanol, and hydrogen + carbon dioxide at high pressures , 2002 .

[16]  Ibrahim Ahamada,et al.  Documents de Travail du Centre d ’ Economie de la Sorbonne The impact of the European Union Emission Trading Scheme on electricity generation sectors , 2009 .

[17]  J. Colls,et al.  CFD and Gaussian atmospheric dispersion models: A comparison for leak from carbon dioxide transportation and storage facilities , 2008 .

[18]  Barbara Bosio,et al.  Pressure–Density–Temperature Measurements of Binary Mixtures Rich in CO2 for Pipeline Transportation in the CCS Process , 2012 .

[19]  A. Aspelund,et al.  Ship Transport of CO2: Technical Solutions and Analysis of Costs, Energy Utilization, Exergy Efficiency and CO2 Emissions , 2006 .

[20]  Ramgopal Thodla,et al.  Materials Performance In Supercritical CO2 Environments , 2009 .

[21]  Jian Li,et al.  Effect of Impurities on the Corrosion Performance of Steels in Supercritical Carbon Dioxide: Optimization of Experimental Procedure , 2013 .

[22]  Per Olav Gartland,et al.  A pipeline integrity management strategy based on multiphase fluid flow and corrosion modeling , 1999 .

[23]  K. Jordal,et al.  Gas conditioning—The interface between CO2 capture and transport , 2007 .

[24]  A. A. Hulaibi,et al.  External Pipeline Coating Performance Evaluation , 2008 .

[25]  Svend Tollak Munkejord,et al.  Depressurization of carbon dioxide in pipelines- Models and methods , 2011 .

[26]  Sigmund Clausen,et al.  Simulation of steady-state pipeline transmission of CO 2 – a comparative study , 2013 .

[27]  Jing Gong,et al.  Natural gas hydrate shell model in gas-slurry pipeline flow , 2010 .

[28]  Martin J. Downie,et al.  The effect of CO2 purity on the development of pipeline networks for carbon capture and storage schemes , 2014 .

[29]  Sebastião Elias Kuri,et al.  Corrosion behavior of supermartensitic stainless steel in aerated and CO2-saturated synthetic seawater , 2006 .

[30]  Sergio D. Kapusta,et al.  Corrosion Management of Wet Gas Pipelines , 1999 .

[31]  Denis Akhiyarov,et al.  Challenges Associated With Flow Assurance Modeling of CO 2 -Rich Pipelines , 2012 .

[32]  M. Mølnvik,et al.  Dynamis CO2 quality recommendations , 2008 .

[33]  Jung-Yeul Jung,et al.  CO2 transport strategy and its cost estimation for the offshore CCS in Korea , 2013 .

[34]  Julia Race,et al.  Challenges for offshore transport of anthropogenic carbon dioxide , 2007 .

[35]  Yoon-Seok Choi,et al.  Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2-water environments. , 2010, Environmental science & technology.

[36]  Yong Hua,et al.  Internal corrosion of carbon steel pipelines for dense-phase CO2 transport in carbon capture and storage (CCS) – a review , 2017 .

[37]  Julia Race,et al.  Transport of gaseous and dense carbon dioxide in pipelines: is there an internal stress corrosion cracking risk? , 2013 .

[38]  Ruiwei Jiang,et al.  Robust Unit Commitment With Wind Power and Pumped Storage Hydro , 2012, IEEE Transactions on Power Systems.

[39]  Minxu Lu,et al.  Corrosion of alloy steels containing 2% chromium in CO2 environments , 2012 .

[40]  S.P.C. Belfroid,et al.  Dynamics of CO2 Transport and Injection Strategies in a Depleted Gas Field , 2012 .

[41]  Andrzej J. Osiadacz,et al.  Dynamic simulation of pipelines containing dense phase/supercritical CO2-rich mixtures for carbon capture and storage , 2012 .

[42]  Jinyue Yan,et al.  Impacts of equations of state (EOS) and impurities on the volume calculation of CO2 mixtures in the applications of CO2 capture and storage (CCS) processes , 2009 .

[43]  Filip Neele,et al.  IMPACTS: Economic Trade-offs for CO2 Impurity Specification , 2014 .

[44]  Boris Gurevich,et al.  Application of diffracted wave analysis to time‐lapse seismic data for CO2 leakage detection , 2014 .

[45]  J. Greet,et al.  Trends in global CO2 emissions: 2012 report , 2012 .

[46]  Xinming Hu,et al.  CO2 erosion–corrosion of pipeline steel (API X65) in oil and gas conditions—A systematic approach , 2009 .

[47]  Clair Gough,et al.  A roadmap for carbon capture and storage in the UK , 2010 .

[48]  Peder Aursand,et al.  Pipeline transport of CO2 mixtures: Models for transient simulation , 2013 .

[49]  G. Demofonti,et al.  CO2 Anthropogenic Pipeline Transportation , 2011 .

[50]  Sankara Papavinasam,et al.  Materials Issues In CO2 Capture, Transport, And Storage Infrastructure , 2012 .

[51]  Julia Race,et al.  The effect of impurities on a simplified CCS network , 2013 .

[52]  Chonghun Han,et al.  CO2 transport: design considerations and project outlook , 2015 .

[53]  Svend Tollak Munkejord,et al.  Combining Thermodynamic and Fluid Flow Modelling for CO2 Flow Assurance , 2013 .

[54]  John E. Oakey,et al.  Understanding dense phase CO2 corrosion problems , 2014 .

[55]  Reinhard Radermacher,et al.  Energy consumption reduction in CO2 capturing and sequestration of an LNG plant through process integration and waste heat utilization , 2012 .

[56]  G. Demofonti,et al.  CCTS (Carbon Capture Transportation & Storage) Transportation Issues , 2011 .

[57]  Yoon-Seok Choi,et al.  Effects of CO2 Phase Change, SO2 Content and Flow on the Corrosion of CO2 Transmission Pipeline Steel , 2012 .

[58]  N. Robert Sorensen,et al.  Corrosive effects of supercritical carbon dioxide and cosolvents on metals , 1996 .

[59]  Andrea Ramírez,et al.  Investing in CO2 transport infrastructure under uncertainty : A comparison between ships and pipelines , 2015 .

[60]  André Faaij,et al.  A state-of-the-art review of techno-economic models predicting the costs of CO2 pipeline transport , 2013 .

[61]  Bjørn Kvamme,et al.  Can hydrate form in carbon dioxide from dissolved water? , 2013, Physical chemistry chemical physics : PCCP.

[62]  Roland Span,et al.  CO2Mix Project: Experimental Determination of Thermo Physical Properties of CO2-Rich Mixtures , 2013 .

[63]  Karsten Pruess,et al.  CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100°C and up to 600 bar , 2003 .

[64]  Arne Dugstad,et al.  Corrosion of transport pipelines for CO2–Effect of water ingress , 2011 .

[65]  Arne Dugstad,et al.  Internal Corrosion In Dense Phase CO2 Transport Pipelines - State of the Art And the Need For Further R&D , 2012 .

[66]  James J. Dooley,et al.  Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks , 2009 .

[67]  Satish Kumar,et al.  Design of CO2 Dehydration and Compression Facilities , 2010 .

[68]  Gary T. Rochelle,et al.  Amine Scrubbing for CO2 Capture , 2009, Science.

[69]  Hailong Li,et al.  CO2 transport–Depressurization, heat transfer and impurities , 2011 .

[70]  Hailong Li,et al.  CO2 pipeline integrity: A new evaluation methodology , 2011 .

[71]  Julia Race,et al.  Comparing the effects of pipe diameter on flow capacity of CO2 pipeline , 2011 .

[72]  Björn Nykvist,et al.  Ten times more difficult: Quantifying the carbon capture and storage challenge , 2013 .

[73]  Ivan S. Cole,et al.  Internal corrosion of CO2 pipelines for carbon capture and storage , 2013 .

[74]  Julia Race,et al.  Techno-economic modelling and analysis of CO2 pipelines , 2012 .

[75]  Luciano Lazzari,et al.  A Proposal of AC Corrosion Mechanism of Carbon Steel in Cathodic Protection Condition , 2013 .

[76]  John Gale,et al.  Transmission of CO2-Safety and Economic Considerations , 2004 .

[77]  Christoph Egbers,et al.  Investigation of CO2 Release Pressures in Pipeline Cracks , 2013 .

[78]  Andrea Ramírez,et al.  Quantitative risk assessment of CO2 transport by pipelines--a review of uncertainties and their impacts. , 2010, Journal of hazardous materials.

[79]  Eric S. Fraga,et al.  Global sensitivity analysis of the impact of impurities on CO2 pipeline failure , 2013, Reliab. Eng. Syst. Saf..

[80]  K. Schoots,et al.  The Cost of Pipelining Climate Change Mitigation: An Overview of the Economics of CH4, CO2 and H2 Transportation , 2010 .

[81]  Andrea Fonzo,et al.  Definition of Requirements for Safe and Reliable CO 2 Transportation Network Through an Integrated Laboratory, Computer Modelling and Full Scale Methodology , 2013 .

[82]  Dermot J. Roddy,et al.  Development of a CO2 network for industrial emissions , 2012 .

[83]  Shuho Yano,et al.  Conceptual Design of CO2 Transportation System for CCS , 2013 .

[84]  Corinne Le Quéré,et al.  The challenge to keep global warming below 2 °C , 2013 .

[85]  Tzimas Evangelos,et al.  Technical and Economic Characteristics of a CO2 Transmission Pipeline Infrastructure , 2011 .

[86]  Stefan Bachu,et al.  Overview of acid-gas injection operations in Western Canada , 2005 .

[87]  A. Azapagic,et al.  Sustainability assessment of energy systems: Integrating environmental, economic and social aspects , 2014 .

[88]  Filip Neele,et al.  A Roadmap Towards a European CO2 Transport Infrastructure , 2013 .

[89]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures : Standard partial molal properties of organic species , 2002 .

[90]  Francisco Caleyo,et al.  A study on the reliability assessment methodology for pipelines with active corrosion defects , 2002 .

[91]  P. Eng CO2 emissions from fuel combustion: highlights , 2009 .

[92]  Svend Tollak Munkejord,et al.  Depressurization of CO2 – a Numerical Benchmark Study , 2012 .

[93]  Kim Johnsen,et al.  DNV recommended practice: Design and operation of CO2 pipelines , 2011 .

[94]  Russell Cooper,et al.  Pipelines for transporting CO2 in the UK , 2014 .

[95]  Jinyue Yan,et al.  Viscosities, thermal conductivities and diffusion coefficients of CO2 mixtures:Review of experimental data and theoretical models , 2011 .

[96]  Julia Race,et al.  13 - Infrastructure and pipeline technology for carbon dioxide (CO2) transport , 2010 .

[97]  Marion Seiersten,et al.  Baseline Experiments for the Modeling of Corrosion at High CO2 Pressure , 2004 .

[98]  Sigurd Weidemann Løvseth,et al.  Accurate Measurements of CO2 Rich Mixture Phase Equilibria Relevant for CCS Transport and Conditioning , 2013 .

[99]  Julian Barnett,et al.  CO2 Transport Systems Development: Status of Three Large European CCS Demonstration Projects with EEPR Funding , 2014 .

[100]  Owain Tucker,et al.  The Longannet to Goldeneye Project: Challenges in Developing an End-to-End CCS Scheme , 2012 .

[101]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[102]  Cristina Botero,et al.  Thermoeconomic Evaluation of CO2 Compression Strategies for Post-Combustion CO2 Capture Applications , 2009 .

[103]  Xinyue Huang,et al.  Micro-mechanical damage modelling of notched bar testing of modern pipe steel , 2013 .

[104]  Ivar Aavatsmark,et al.  PVTx Properties of a Two-phase CO2 Jet from Ruptured Pipeline , 2013 .

[105]  Greg Van Boven,et al.  Corrosion fatigue crack growth behavior of pipeline steel under underload-type variable amplitude loading schemes , 2015 .

[106]  Andrzej Witkowski,et al.  Comprehensive analysis of pipeline transportation systems for CO2 sequestration. Thermodynamics and safety problems , 2013 .

[107]  Dianne E. Wiley,et al.  Steady-state design of CO2 pipeline networks for minimal cost per tonne of CO2 avoided , 2012 .

[108]  J. Antill,et al.  Behaviour of carbon during the corrosion of stainless steel by carbon dioxide , 1967 .

[109]  Adam Whitmore,et al.  Realistic costs of carbon capture , 2009 .

[110]  Geert Verbong,et al.  istorical variation in the capital costs of natural gas , carbon dioxide and ydrogen pipelines and implications for future infrastructure , 2011 .

[111]  Donald F.B. Jackson Filtering Elevation Profile Data To Improve Performance of Multiphase Pipeline Simulations , 2008 .

[112]  Alfons Kather,et al.  Corrosion of Pipeline and Compressor Materials Due to Impurities in Separated CO2 from Fossil-Fuelled Power Plants , 2012 .

[113]  Kelly Sims Gallagher,et al.  Preparing to ramp up large-scale CCS demonstrations: An engineering-economic assessment of CO2 pipeline transportation in China , 2011 .

[114]  Nikita Chugunov,et al.  Effect of contaminants on the thermodynamic properties of CO2 -rich fluids and ramifications in the design of surface and injection facilities for geologic CO2 sequestration , 2011 .

[115]  J. L. Mora-Mendoza,et al.  Fe3C influence on the corrosion rate of mild steel in aqueous CO2 systems under turbulent flow conditions , 2002 .

[116]  S. Grise,et al.  Effects Of Oxygen, Temperature And Salinity On Carbon Steel Corrosion In Aqueous Solutions; Model Predictions Versus Laboratory Results , 2008 .

[117]  H Mahgerefteh,et al.  Modeling low‐temperature–induced failure of pressurized pipelines , 2006 .

[118]  Anne Neville,et al.  Erosion–corrosion of engineering steels—Can it be managed by use of chemicals? , 2009 .

[119]  Hossam A. Gabbar,et al.  Review of pipeline integrity management practices , 2010 .

[120]  Svend Tollak Munkejord,et al.  Thermo- and fluid-dynamical modelling of two-phase multi-component carbon dioxide mixtures , 2010 .

[121]  David Willson,et al.  An energetic analysis of CO2 capture on a gas turbine combining flue gas recirculation and membrane separation , 2011 .

[122]  Aage Stangeland,et al.  A Mechanistic Model for Carbon Dioxide Corrosion of Mild Steel in the Presence of Protective Iron Carbonate Films—Part 1: Theory and Verification , 2003 .

[123]  Shihuai Wang,et al.  Modeling of CO2 Corrosion of Mild Steel in the Presence of High Partial Pressures of CO2 and Acetic Acid - Electrochemical Modeling and a Modification to the de Waard Corrosion Model , 2004 .

[124]  Peter Viebahn,et al.  Prospects of carbon capture and storage (CCS) in India’s power sector – An integrated assessment , 2014 .

[125]  Jun-Seok Bae,et al.  Application of carbon fibre composites to CO2 capture from flue gas , 2013 .

[126]  Lars Even Torbergsen,et al.  Development of a Guideline for Safe, Reliable and Cost Efficient Transmission of CO2 in Pipelines , 2009 .

[127]  Robert R. Nordhaus,et al.  Carbon Dioxide Pipeline Regulation , 2009 .

[128]  Pei-Xue Jiang,et al.  A Computational Study of Convection Heat Transfer to CO2 at Supercritical Pressures in a Vertical Mini Tube , 2004 .

[129]  K. Mounika,et al.  GRID INTERCONNECTION OF RENEWABLE ENERGY SOURCES AT THE DISTRIBUTION LEVEL WITH POWER QUALITY IMPROVEMENT FEATURES , 2019 .

[130]  Francisco Caleyo,et al.  Reliability assessment of buried pipelines based on different corrosion rate models , 2013 .

[131]  Rafig Azzam,et al.  Development of a techno-economic model for dynamic calculation of cost of electricity, energy demand and CO2 emissions of an integrated UCG–CCS process , 2014 .

[132]  John A. Harju,et al.  Methodology for Phased Development of a Hypothetical Pipeline Network for CO2 Transport during Carbon Capture, Utilization, and Storage , 2013 .

[133]  M. J. Robinson,et al.  Assessment of Vented Flexible Liners For Corrosion Protection of Pipelines , 2011 .

[134]  Dianne E. Wiley,et al.  Optimal Pipeline Design with Increasing CO2 Flow Rates , 2013 .

[135]  Junhang Dong,et al.  High pressure vapor liquid equilibria at 293 K for systems containing nitrogen, methane and carbon dioxide , 1992 .

[136]  Adrian Badea ECONOMICAL AND TECHNICAL ANALYSIS OF CO2 TRANSPORT WAYS , 2012 .

[137]  Ivan S. Cole,et al.  Environmental phosphate coating for corrosion prevention in CO2 pipelines , 2013 .

[138]  Fernando G. Martins,et al.  Recent developments on carbon capture and storage: An overview , 2011 .

[139]  Y. Yang,et al.  Potential Flue Gas Impurities in Carbon Dioxide Streams Separated from Coal-Fired Power Plants , 2009, Journal of the Air & Waste Management Association.

[140]  Alexey Kalinin,et al.  Case studies on CO2 transport infrastructure: Optimization of pipeline network, effect of ownership, and political incentives , 2011 .

[141]  Nilay Shah,et al.  Design and Analysis of CO2 Capture, Transport, and Storage Networks , 2012 .

[142]  Chao Xu,et al.  Impact of SO2 concentration on the corrosion rate of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2 , 2011 .

[143]  Toby Aiken,et al.  Effects of impurities on CO2 transport, injection and storage , 2011 .

[144]  Charles Eickhoff,et al.  Effect of Common Impurities on the Phase Behavior of Carbon-Dioxide-Rich Systems: Minimizing the Risk of Hydrate Formation and Two-Phase Flow , 2011 .

[145]  Herbert T. Schaef,et al.  Water reactivity in the liquid and supercritical CO2 phase: Has half the story been neglected? , 2009 .

[146]  G. Eastwick,et al.  Corrosion Of Materials In Supercritical Carbon Dioxide Environments , 2008 .

[147]  Yoon-Seok Choi,et al.  Water Chemistry For Corrosion Prediction In High Pressure CO2 Environments , 2011 .

[148]  Michael L. Corradini,et al.  Heat Transfer of Supercritical Carbon Dioxide in Printed Circuit Heat Exchanger Geometries , 2011 .

[149]  Masoud Haghshenas Fard CFD modeling of heat transfer of CO2 at supercritical pressures flowing vertically in porous tubes , 2010 .

[150]  Andrea Ramírez,et al.  Economic Optimization of CO2 Pipeline Configurations , 2013 .

[151]  Christopher Nichols,et al.  Storing CO2 with enhanced oil recovery , 2009 .

[152]  Jim Fogg,et al.  Hydraulic Considerations for Pipelines Crossing Stream Channels , 2007 .

[153]  V. Ramanathan,et al.  On avoiding dangerous anthropogenic interference with the climate system: Formidable challenges ahead , 2008, Proceedings of the National Academy of Sciences.

[154]  Peder Aursand,et al.  Heat Transfer Characteristics of a Pipeline for CO2 Transport with Water as Surrounding Substance , 2013 .

[155]  S.P.C. Belfroid,et al.  Flow Assurance Study , 2013 .

[156]  Hannes E. Leetaru,et al.  Early Operational Experience at a One-million Tonne CCS Demonstration Project, Decatur, Illinois, USA☆ , 2013 .

[157]  Sigmund Clausen,et al.  Depressurization of a 50 km long 24 inches CO2 pipeline , 2012 .

[158]  Edward S. Rubin,et al.  An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage , 2008 .

[159]  H. Ashassi-Sorkhabi,et al.  The inhibition effect of some amino acids towards the corrosion of aluminum in 1 M HCl + 1 M H2SO4 solution , 2005 .

[160]  Massimo Di Biagio,et al.  CO2 Full Scale Facilities Challenges For EOR/CCTS Testing On Transportation Issues , 2012 .

[161]  Massimo Di Biagio,et al.  CO2 Pipeline Transportation New Needs , 2014 .

[162]  Bjørn Kvamme,et al.  Thermodynamic properties and phase transtions in the H2O/CO2/CH4 system. , 2006, Physical chemistry chemical physics : PCCP.

[163]  Richard Kania,et al.  Effect Of CO2 On Near-Neutral Ph Stress Corrosion Cracking Initiation Of Pipeline Steel , 2010 .

[164]  David L. Coleman Transport infrastructure rationale for carbon dioxide capture & storage in the European Union to 2050 , 2009 .

[165]  Jean-Philippe Nicot,et al.  Impurities in CO2-Rich Mixtures Impact CO2 Pipeline Design: Implications for Calculating CO2 Transport Capacity , 2010 .

[166]  Alireza Bahadori,et al.  A Simple Method for Prediction of Transport Properties of Carbon Dioxide , 2009 .

[167]  Aki Sebastian Ruhl,et al.  Corrosion behavior of various steels in a continuous flow of carbon dioxide containing impurities , 2012 .

[168]  Kris Piessens,et al.  Pipeline design for a least-cost router application for CO2 transport in the CO2 sequestration cycle , 2008 .

[169]  Ivan S. Cole,et al.  Aqueous Corrosion Testing and Neural Network Modeling to Simulate Corrosion of Supercritical CO2 Pipelines in the Carbon Capture and Storage Cycle , 2013 .

[170]  Marion Seiersten,et al.  Materials Selection for Separation, Transportation and Disposal of CO2 , 2001 .

[171]  Wim Turkenburg,et al.  CO2 enhanced coalbed methane production in the Netherlands , 2002 .

[172]  Cheol Huh,et al.  Effect of water and nitrogen impurities on CO2 pipeline transport for geological storage , 2011 .

[173]  Evan J. Granite,et al.  Review of novel methods for carbon dioxide separation from flue and fuel gases , 2005 .

[174]  John E. Oakey,et al.  Design overview of high pressure dense phase CO2 pipeline transport in flow mode. , 2013 .

[175]  Aki Sebastian Ruhl,et al.  Investigation of corrosive effects of sulphur dioxide, oxygen and water vapour on pipeline steels , 2013 .

[176]  Desy Santhyani,et al.  Advance Study of Top of Line Corrosion Risk: Methodology and Evaluation of Mitigation for New Pipeline , 2013 .

[177]  David Picard,et al.  Simulation‐based estimates of safety distances for pipeline transportation of carbon dioxide , 2013 .

[178]  Hailong Li,et al.  Evaluating cubic equations of state for calculation of vapor–liquid equilibrium of CO2 and CO2-mixtures for CO2 capture and storage processes , 2009 .

[179]  Weidou Ni,et al.  The upper limit of moisture content for supercritical CO2 pipeline transport , 2012 .

[180]  P. Parfomak,et al.  Pipelines for Carbon Dioxide (CO2) Control: Network Needs and Cost Uncertainties , 2008 .

[181]  Evangelos Tzimas,et al.  Optimised deployment of a European CO2 transport network , 2012 .

[182]  Ivan S. Cole,et al.  Corrosion of pipelines used for CO2 transport in CCS: Is it a real problem? , 2011 .

[183]  Ian J. Duncan,et al.  Estimating the likelihood of pipeline failure in CO2 transmission pipelines: New insights on risks of carbon capture and storage , 2014 .

[184]  Andrea Ramírez,et al.  Improved cost models for optimizing CO2 pipeline configuration for point-to-point pipelines and simple networks , 2014 .

[185]  Ireneo Kikic,et al.  High pressure fluid phase equilibria : experimental methods and systems investigated (1978-1987) , 1990 .

[186]  Sarah Itani,et al.  The Alberta Carbon Trunk Line and the Benefits of CO2 , 2013 .

[187]  Arthur Lee,et al.  Assessing issues of financing a CO2 transportation pipeline infrastructure , 2009 .

[188]  John A. Harju,et al.  A Phased Approach to Building a Hypothetical Pipeline Network for CO2 Transport During CCUS , 2013 .

[189]  Federico Daguerre,et al.  Materials Optimization For CO2 Transportation In CO2 Capture And Storage , 2010 .

[190]  Ton Wildenborg,et al.  Economic CO2 network optimization model COCATE European Project (2010-2013)☆ , 2013 .

[191]  James G. Blencoe,et al.  Volumetric properties for {x1CO2+x2CH4+ (1 −x1−x2)N2} at the pressures (19.94, 39.94, 59.93, and 99.93) MPa and temperatures (323.15, 373.15, 473.15, and 573.15) K , 1996 .

[192]  Iftikhar Ahmad,et al.  Pipeline Integrity Management Through Corrosion Mitigation And Inspection Strategy In Corrosive Environment: An Experience of Arabian Gulf Oil Company In Libya , 2011 .

[193]  F. M. Song,et al.  A comprehensive model for predicting CO2 corrosion rate in oil and gas production and transportation systems , 2010 .

[194]  Zaoxiao Zhang,et al.  Optimization of pipeline transport for CO2 sequestration , 2006 .

[195]  Andrea Ramírez,et al.  The environmental impact and risk assessment of CO2 capture, transport and storage – An evaluation of the knowledge base , 2012 .

[196]  P Hopkins,et al.  Best practice for the assessment of defects in pipelines – Corrosion , 2007 .

[197]  Hans Joachim Krautz,et al.  Modelling of the CO2 process- and transport chain in CCS systems—Examination of transport and storage processes , 2010 .

[198]  Simon James,et al.  Corrosion and materials selection issues in carbon capture plants , 2011 .

[199]  P. Cherubini,et al.  Pipeline Integrity Management As A Part Of Facilities Integrity Management , 2009 .

[200]  Ramgopal Thodla,et al.  Effect of Liquid Impurities on Corrosion of Carbon Steel in Supercritical CO2 , 2010 .

[201]  M. Bonis,et al.  Managing the corrosion impact of dense phase CO2 injection for an EOR purpose , 2012 .

[202]  Jan Corfee-Morlot,et al.  Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “reasons for concern” , 2009, Proceedings of the National Academy of Sciences.

[203]  A. Halvorsen,et al.  CO2 Corrosion Prediction Model - Basic Principles , 2005 .

[204]  E. Thorin,et al.  Property impacts on Carbon Capture and Storage (CCS) processes: A review , 2016 .

[205]  I. Puigdomènech,et al.  Revised pourbaix diagrams for chromium at 25–300 °C , 1997 .

[206]  Q. H. Yin,et al.  A phenomenological equation of exergy transfer and its application , 2005 .