Experimental and numerical investigation of fracture mechanics of bitumen beams

Abstract This work presents an experimental and numerical investigation to characterise the fracture properties of pure bitumen (the binder in asphalt paving materials). The paper is divided into two parts. The first part describes an experimental study of fracture characterisation parameters of pure bitumen as determined by three-point bend tests. The second part deals with modelling of fracture and failure of bitumen by Finite Element analysis. Fracture mechanics parameters, stress intensity factor, KIC, fracture energy, GIC, and J-integral, JIC, are used for evaluation of bitumen’s fracture properties. The material constitutive model developed by Ossa et al. [40] , [41] which was implemented into a FE code by Costanzi [18] is combined with cohesive zone models (CZM) to simulate the fracture behaviour of pure bitumen. Experimental and numerical results are presented in the form of failure mechanism maps where ductile, brittle and brittle-ductile transition regimes of fracture behaviour are classified. The FE predictions of fracture behaviour match well with experimental results.

[1]  B. Birgisson,et al.  Characterisation of asphalt mixture cracking behaviour using the three-point bending beam test , 2011 .

[2]  O. Portillo,et al.  Modeling Failure of Bitumen Films in Tension , 2012 .

[3]  J. Porter Highway research : sharing the benefits , 1991 .

[4]  Edmund Thelen,et al.  SURFACE ENERGY AND ADHESION PROPERTIES IN ASPHALT - AGGREGATE SYSTEMS , 1958 .

[5]  Chi Yue Cheung Mechanical behaviour of bitumens and bituminous mixes. , 1995 .

[6]  J. Hutchinson,et al.  The influence of plasticity on mixed mode interface toughness , 1993 .

[7]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[8]  E. A. Ossa,et al.  Triaxial deformation behavior of bituminous mixes , 2010 .

[9]  M. Crisfield,et al.  Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues , 2001 .

[10]  David Cebon,et al.  An experimental investigation of the fracture mechanics of bitumen and asphalt , 2008 .

[11]  E. A. Ossa,et al.  Spherical indentation behaviour of bitumen , 2005 .

[12]  B. Picoux,et al.  Finite element model for crack growth process in concrete bituminous , 2012, Adv. Eng. Softw..

[13]  Robert L. Lytton,et al.  AN ANALYSIS OF THE MECHANISM OF MICRODAMAGE HEALING BASED ON THE APPLICATION OF MICROMECHANICS FIRST PRINCIPLES OF FRACTURE AND HEALING , 1999 .

[14]  Glaucio H. Paulino,et al.  Cohesive zone modeling of dynamic failure in homogeneous and functionally graded materials , 2005 .

[15]  David Cebon,et al.  Deformation mechanisms of pure bitumen , 1997 .

[16]  David Cebon,et al.  Failure mechanisms in viscoelastic films , 2003 .

[17]  Xiaopeng Xu,et al.  Void nucleation by inclusion debonding in a crystal matrix , 1993 .

[18]  Glaucio H. Paulino,et al.  A unified potential-based cohesive model of mixed-mode fracture , 2009 .

[19]  P. Geubelle,et al.  Impact-induced delamination of composites: A 2D simulation , 1998 .

[20]  H. Espinosa,et al.  A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: Theory and numerical implementation , 2003 .

[21]  E. A. Ossa Deformation behaviour of bitumen and bituminous mixes , 2005 .

[22]  H. Kobayashi,et al.  STANDARD METHOD OF TEST FOR ELASTIC-PLASTIC FRACTURE TOUGHNESS JIC RECOMMENDED IN JAPAN , 1984 .

[23]  E. A. Ossa,et al.  PHENOMENOLOGICAL MODEL FOR MONOTONIC AND CYCLIC BEHAVIOR OF PURE BITUMEN , 2005 .

[24]  R. Landel,et al.  The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids , 1955 .

[25]  Monotonic and cyclic behaviour of polymer-modified bitumens , 2004 .

[26]  K Majidzadeh,et al.  APPLICATION OF FRACTURE MECHANICS IN THE ANALYSIS OF PAVEMENT FATIGUE , 1971 .

[27]  M. Costanzi,et al.  Generalized Phenomenological Model for the Viscoelasticity of Bitumen , 2015 .

[28]  D. Larson,et al.  STUDY OF ASPHALT BINDERS USING LAP SHEAR BONDS. , 1998 .

[29]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[30]  C. Y. Cheung,et al.  Experimental study of pure bitumens in tension, compression, and shear , 1997 .

[31]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[32]  David Cebon,et al.  Fracture Tests on Bitumen Films , 2005 .

[33]  J. Hutchinson,et al.  The relation between crack growth resistance and fracture process parameters in elastic-plastic solids , 1992 .

[34]  Raj Dongré,et al.  DEVELOPMENT OF FRACTURE CRITERION FOR ASPHALT MIXES AT LOW TEMPERATURES , 1989 .

[35]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[36]  Dallas N. Little,et al.  Application of microcalorimeter to characterize adhesion between asphalt binders and aggregates , 2009 .

[37]  Masoud K. Darabi,et al.  A thermo-viscoelastic-viscoplastic-viscodamage constitutive model for asphaltic materials , 2011 .

[38]  A. Needleman An analysis of tensile decohesion along an interface , 1990 .

[39]  James R. Rice,et al.  Embrittlement of interfaces by solute segregation , 1989 .

[40]  David A Anderson,et al.  Fracture mechanics and asphalt binders , 2006 .

[41]  David Cebon,et al.  Interaction Between Heavy Vehicles and Roads , 1993 .

[42]  Yong-Rak Kim,et al.  Cohesive zone model to predict fracture in bituminous materials and asphaltic pavements: state-of-the-art review , 2011 .

[43]  V. Tvergaard Effect of fibre debonding in a whisker-reinforced metal , 1990 .