Age-related thermal response: the cellular resilience of juveniles

[1]  L. Peck,et al.  Hypoxia impacts large adults first: consequences in a warming world , 2013, Global change biology.

[2]  L. Peck,et al.  Juveniles Are More Resistant to Warming than Adults in 4 Species of Antarctic Marine Invertebrates , 2013, PloS one.

[3]  P. A. Fields,et al.  Proteomic responses of blue mussel (Mytilus) congeners to temperature acclimation , 2012, Journal of Experimental Biology.

[4]  P. Rosenstiel,et al.  Immune response of the Antarctic bivalve Laternula elliptica to physical stress and microbial exposure , 2011 .

[5]  B. Ma,et al.  Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. , 2011, Annual review of physiology.

[6]  D. Abele,et al.  The impact of sediment deposition and iceberg scour on the Antarctic soft shell clam Laternula elliptica at King George Island, Antarctica , 2011, Antarctic Science.

[7]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[8]  G. Somero,et al.  Transcriptomic responses to heat stress in invasive and native blue mussels (genus Mytilus): molecular correlates of invasive success , 2010, Journal of Experimental Biology.

[9]  A. Pallavicini,et al.  MgC1q, a novel C1q-domain-containing protein involved in the immune response of Mytilus galloprovincialis. , 2010, Developmental and comparative immunology.

[10]  Michael A. S. Thorne,et al.  Transcriptional response to heat stress in the Antarctic bivalve Laternula elliptica , 2010 .

[11]  Sophia Tsoka,et al.  Promoter Complexity and Tissue-Specific Expression of Stress Response Components in Mytilus galloprovincialis, a Sessile Marine Invertebrate Species , 2010, PLoS Comput. Biol..

[12]  Melody S Clark,et al.  Insights into shell deposition in the Antarctic bivalve Laternula elliptica: gene discovery in the mantle transcriptome using 454 pyrosequencing , 2010, BMC Genomics.

[13]  G. Somero,et al.  The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’ , 2010, Journal of Experimental Biology.

[14]  K. Drinkwater,et al.  Comparison of the response of Atlantic cod ( Gadus morhua) in the high-latitude regions of the North Atlantic during the warm periods of the 1920s-1960s and the 1990s-2000s , 2009 .

[15]  L. Peck,et al.  Triggers of the HSP70 stress response: environmental responses and laboratory manipulation in an Antarctic marine invertebrate (Nacella concinna) , 2009, Cell Stress and Chaperones.

[16]  L. Peck,et al.  Animal temperature limits and ecological relevance: effects of size, activity and rates of change , 2009 .

[17]  G. Burns,et al.  Cold hardening processes in the Antarctic springtail, Cryptopygus antarcticus: clues from a microarray. , 2008, Journal of insect physiology.

[18]  B. Degnan,et al.  Impact of ecologically relevant heat shocks on Hsp developmental function in the vetigastropod Haliotis asinina. , 2008, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[19]  C. Gourlay,et al.  Cytoskeletal induced apoptosis in yeast. , 2008, Biochimica et biophysica acta.

[20]  L. Peck,et al.  Thermal limits of burrowing capacity are linked to oxygen availability and size in the Antarctic clam Laternula elliptica , 2007, Oecologia.

[21]  Gordon K. Smyth,et al.  A comparison of background correction methods for two-colour microarrays , 2007, Bioinform..

[22]  V. Loeschcke,et al.  Studying stress responses in the post-genomic era: its ecological and evolutionary role , 2007, Journal of Biosciences.

[23]  L. Peck,et al.  Hypoxia tolerance associated with activity reduction is a key adaptation for Laternula elliptica seasonal energetics , 2007, Oecologia.

[24]  G. Somero,et al.  The cellular response to heat stress in the goby Gillichthys mirabilis: a cDNA microarray and protein-level analysis , 2006, Journal of Experimental Biology.

[25]  Gordon K. Smyth,et al.  Use of within-array replicate spots for assessing differential expression in microarray experiments , 2005, Bioinform..

[26]  Cathy H. Wu,et al.  The Universal Protein Resource (UniProt) , 2004, Nucleic Acids Res..

[27]  Lloyd S. Peck,et al.  Extreme sensitivity of biological function to temperature in Antarctic marine species , 2004 .

[28]  Paul A. Tyler,et al.  Long-term interannual cycles of the gametogenic ecology of the Antarctic brittle star Ophionotus victoriae , 2004 .

[29]  Mark L. Blaxter,et al.  PartiGene-constructing partial genomes , 2004, Bioinform..

[30]  Gordon K Smyth,et al.  Statistical Applications in Genetics and Molecular Biology Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments , 2011 .

[31]  Terry Speed,et al.  Normalization of cDNA microarray data. , 2003, Methods.

[32]  V. P. Collins,et al.  Global amplification of mRNA by template-switching PCR: linearity and application to microarray analysis. , 2003, Nucleic acids research.

[33]  John Quackenbush,et al.  TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets , 2003, Bioinform..

[34]  L. Peck,et al.  Metabolic Demand, Oxygen Supply, and Critical Temperatures in the Antarctic Bivalve Laternula elliptica , 2002, Physiological and Biochemical Zoology.

[35]  J. Bythell,et al.  Oxidative-stress: comparison of species specific and tissue specific effects in the marine bivalves Mytilus edulis (L.) and Dosinia lupinus (L.). , 2000, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[36]  Anne Bertolotti,et al.  Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response , 2000, Nature Cell Biology.

[37]  M. Mattson,et al.  The Endoplasmic Reticulum Stress-Responsive Protein GRP78 Protects Neurons Against Excitotoxicity and Apoptosis: Suppression of Oxidative Stress and Stabilization of Calcium Homeostasis , 1999, Experimental Neurology.

[38]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[39]  Jonathan A. Cooper,et al.  Mitogen‐activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2 , 1997, The EMBO journal.

[40]  Ahn In-Young Ecology of the Antarctic bivalve Laternula elliptica (King and Broderip) in Collins Harbor, King George Island: Benthic environment and an adaptive strategy , 1994 .

[41]  G. Somero,et al.  EFFECTS OF TEMPERATURE ON MITOCHONDRIA FROM ABALONE (GENUS HALIOTIS): ADAPTIVE PLASTICITY AND ITS LIMITS , 1993 .

[42]  L. Cook,et al.  Heating properties of morphs of the mangrove snail Littoraria pallescens , 1986 .

[43]  R. Tsien,et al.  Large changes in intracellular pH and calcium observed during heat shock are not responsible for the induction of heat shock proteins in Drosophila melanogaster , 1986, Molecular and cellular biology.

[44]  R. Ralph,et al.  Growth of two Antarctic lamellibranchs: Adamussium colbecki and Laternula elliptica , 1977 .

[45]  Hanlon Fong,et al.  Animal Physiology: Adaptation and Environment , 1975, The Yale Journal of Biology and Medicine.

[46]  Stephan Mehler,et al.  Modern Applied Statistics , 2016 .

[47]  P. Rosenstiel,et al.  Age-dependent expression of stress and antimicrobial genes in the hemocytes and siphon tissue of the Antarctic bivalve, Laternula elliptica, exposed to injury and starvation , 2013, Cell Stress and Chaperones.

[48]  L. Tomanek Environmental proteomics: changes in the proteome of marine organisms in response to environmental stress, pollutants, infection, symbiosis, and development. , 2011, Annual review of marine science.

[49]  Lloyd S. Peck,et al.  Antarctic marine molluscs do have an HSP70 heat shock response , 2008, Cell Stress and Chaperones.

[50]  Gordon K. Smyth,et al.  limma: Linear Models for Microarray Data , 2005 .

[51]  D. Kültz,et al.  Molecular and evolutionary basis of the cellular stress response. , 2005, Annual review of physiology.

[52]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[53]  H. De Spatio-temporal genetic structure and gene flow between two distinct shell morphs of the planktonic developing periwinkle Littorina striata ( Mollusca : Prosobranchia ) , 2022 .