Direct Observation and Quantitative Analysis of Mobile Frenkel Defects in Metal Halide Perovskites Using Scanning Kelvin Probe Microscopy

Ion migration is seen as a primary stability concern of halide perovskite-based photovoltaic and optoelectronic devices. Here, we provide experimental studies of long-distance, reversible ion migration in methylammonium lead iodide (MAPbI3) and formamidinium lead iodide (FAPbI3) films. We use time-resolved scanning Kelvin probe microscopy on insulator-coated lateral electrodes to probe the dynamic redistribution of charged Frenkel defects over micrometer distances after application of an electric field. We combine these dynamic measurements with drift–diffusion simulations that yield self-consistent pictures of the sign, distribution, mobility, and activation energy of the associated, mobile Frenkel defects. This comprehensive approach is applied to study the impact of an organic cation on ionic mobility in metal halide perovskites, which we find to be significantly reduced in the case of FAPbI3 films compared to MAPbI3 films.

[1]  D. Ginger,et al.  Interplay of Mobile Ions and Injected Carriers Creates Recombination Centers in Metal Halide Perovskites under Bias , 2018 .

[2]  R. Scheidt,et al.  Electrochemistry and Spectroelectrochemistry of Lead Halide Perovskite Films: Materials Science Aspects and Boundary Conditions , 2017, Chemistry of materials : a publication of the American Chemical Society.

[3]  R. Scheidt,et al.  Modulation of Charge Recombination in CsPbBr3 Perovskite Films with Electrochemical Bias , 2017, Journal of the American Chemical Society.

[4]  Jürgen Köhler,et al.  Real-Time Observation of Iodide Ion Migration in Methylammonium Lead Halide Perovskites. , 2017, Small.

[5]  Stephen Jesse,et al.  Breaking the Time Barrier in Kelvin Probe Force Microscopy: Fast Free Force Reconstruction Using the G-Mode Platform. , 2017, ACS nano.

[6]  Wolfgang Tress,et al.  Metal Halide Perovskites as Mixed Electronic-Ionic Conductors: Challenges and Opportunities-From Hysteresis to Memristivity. , 2017, The journal of physical chemistry letters.

[7]  M. Grätzel,et al.  The Nature of Ion Conduction in Methylammonium Lead Iodide: A Multimethod Approach , 2017, Angewandte Chemie.

[8]  D. Ginger,et al.  B‑Site Metal Cation Exchange in Halide Perovskites , 2017 .

[9]  Bernard Geffroy,et al.  Direct Experimental Evidence of Halide Ionic Migration under Bias in CH3NH3PbI3–xClx-Based Perovskite Solar Cells Using GD-OES Analysis , 2017 .

[10]  Miao Hu,et al.  Real-Time Nanoscale Open-Circuit Voltage Dynamics of Perovskite Solar Cells. , 2017, Nano letters.

[11]  Thanh Luan Nguyen,et al.  Observing Ion Motion in Conjugated Polyelectrolytes with Kelvin Probe Force Microscopy , 2017 .

[12]  Anders Hagfeldt,et al.  Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells , 2017 .

[13]  Adam Pockett,et al.  Measurement and modelling of dark current decay transients in perovskite solar cells , 2017 .

[14]  Adam Pockett,et al.  Microseconds, milliseconds and seconds: deconvoluting the dynamic behaviour of planar perovskite solar cells. , 2016, Physical chemistry chemical physics : PCCP.

[15]  Jinsong Huang,et al.  Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals. , 2016, Physical chemistry chemical physics : PCCP.

[16]  B. Rand,et al.  Redox Chemistry Dominates the Degradation and Decomposition of Metal Halide Perovskite Optoelectronic Devices , 2016 .

[17]  Sergei V. Kalinin,et al.  Full data acquisition in Kelvin Probe Force Microscopy: Mapping dynamic electric phenomena in real space , 2016, Scientific Reports.

[18]  R. Berger,et al.  Local Time-Dependent Charging in a Perovskite Solar Cell. , 2016, ACS applied materials & interfaces.

[19]  Fuzhi Huang,et al.  Reversible Structural Swell-Shrink and Recoverable Optical Properties in Hybrid Inorganic-Organic Perovskite. , 2016, ACS nano.

[20]  P. Delugas,et al.  Thermally Activated Point Defect Diffusion in Methylammonium Lead Trihalide: Anisotropic and Ultrahigh Mobility of Iodine. , 2016, The journal of physical chemistry letters.

[21]  Lijun Zhang,et al.  Fast Diffusion of Native Defects and Impurities in Perovskite Solar Cell Material CH3NH3PbI3 , 2016 .

[22]  E. Mosconi,et al.  Mobile Ions in Organohalide Perovskites: Interplay of Electronic Structure and Dynamics , 2016, Proceedings of the nanoGe Fall Meeting 2018.

[23]  Nazifah Islam,et al.  Polarization and Dielectric Study of Methylammonium Lead Iodide Thin Film to Reveal its Nonferroelectric Nature under Solar Cell Operating Conditions , 2016 .

[24]  Wei Zhang,et al.  Photo-induced halide redistribution in organic–inorganic perovskite films , 2016, Nature Communications.

[25]  T. Peltola,et al.  Can slow-moving ions explain hysteresis in the current–voltage curves of perovskite solar cells? , 2016 .

[26]  N. Zhao,et al.  Native Defect‐Induced Hysteresis Behavior in Organolead Iodide Perovskite Solar Cells , 2016 .

[27]  A. Köhler,et al.  Iodine Migration and its Effect on Hysteresis in Perovskite Solar Cells , 2016, Advanced materials.

[28]  Meng-Che Tsai,et al.  Organometal halide perovskite solar cells: degradation and stability , 2016 .

[29]  S. Meloni,et al.  Ionic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cells , 2016, Nature Communications.

[30]  P. Kamat,et al.  Spatially Non-uniform Trap State Densities in Solution-Processed Hybrid Perovskite Thin Films. , 2016, The journal of physical chemistry letters.

[31]  J. Munday,et al.  Fast, high-resolution surface potential measurements in air with heterodyne Kelvin probe force microscopy , 2016, Nanotechnology.

[32]  Feng Liu,et al.  Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability. , 2015, Journal of the American Chemical Society.

[33]  Martijn Kemerink,et al.  Modeling Anomalous Hysteresis in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[34]  Keitaro Sodeyama,et al.  First-Principles Study of Ion Diffusion in Perovskite Solar Cell Sensitizers. , 2015, Journal of the American Chemical Society.

[35]  Yongbo Yuan,et al.  Photovoltaic Switching Mechanism in Lateral Structure Hybrid Perovskite Solar Cells , 2015 .

[36]  J. Bisquert,et al.  Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation , 2015 .

[37]  Michael Grätzel,et al.  The Significance of Ion Conduction in a Hybrid Organic-Inorganic Lead-Iodide-Based Perovskite Photosensitizer. , 2015, Angewandte Chemie.

[38]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[39]  Qingfeng Dong,et al.  Giant switchable photovoltaic effect in organometal trihalide perovskite devices. , 2015, Nature materials.

[40]  Eric T. Hoke,et al.  Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics† †Electronic supplementary information (ESI) available: Experimental details, PL, PDS spectra and XRD patterns. See DOI: 10.1039/c4sc03141e Click here for additional data file. , 2014, Chemical science.

[41]  J. Bisquert,et al.  Electrical field profile and doping in planar lead halide perovskite solar cells , 2014 .

[42]  Mohammad Khaja Nazeeruddin,et al.  Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell , 2014, Nature Communications.

[43]  Alain Goriely,et al.  Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States , 2014 .

[44]  Nripan Mathews,et al.  Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells , 2014 .

[45]  Aron Walsh,et al.  Electronic structure of hybrid halide perovskite photovoltaic absorbers , 2014, 1401.6993.

[46]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[47]  A. F. Tillack,et al.  Submicrosecond time resolution atomic force microscopy for probing nanoscale dynamics. , 2012, Nano letters.

[48]  D. Ginger,et al.  Concerted emission and local potentiometry of light-emitting electrochemical cells. , 2010, ACS nano.

[49]  Martijn Kemerink,et al.  Real versus measured surface potentials in scanning Kelvin probe microscopy. , 2008, ACS nano.

[50]  D. Ginger,et al.  Scanning Kelvin probe imaging of the potential profiles in fixed and dynamic planar LECs. , 2007, Journal of the American Chemical Society.

[51]  William R. Silveira,et al.  Direct measurement of the electric-field distribution in a light-emitting electrochemical cell. , 2007, Nature materials.

[52]  D. Ginger,et al.  Time-resolved electrostatic force microscopy of polymer solar cells , 2006, Nature materials.

[53]  Yossi Rosenwaks,et al.  Kelvin probe force microscopy of semiconductor surface defects , 2004 .

[54]  Hiroyuki Sugimura,et al.  Potential shielding by the surface water layer in Kelvin probe force microscopy , 2002 .

[55]  Gerbrand Ceder,et al.  First-principles theory of ionic diffusion with nondilute carriers , 2001 .