Modelling the nonlinear plasma response to externally applied three-dimensional fields with the Stepped Pressure Equilibrium Code

Small-amplitude, symmetry-breaking magnetic field perturbations, including resonant magnetic perturbations (RMPs) and error fields, can profoundly impact plasma properties in both tokamaks and stellarators. In this work, we perform the first comparison between the Stepped Pressure Equilibrium Code (SPEC) (a comparatively fast and efficient equilibrium code based on energy-minimisation principles) and M3D-C$^{1}$ (a high-fidelity albeit computationally expensive initial-value extended-magnetohydro- dynamic (MHD) code) to assess the conditions under which SPEC can be used to model the nonlinear, non-ideal plasma response to an externally applied $(m=2,n=1)$ RMP field in an experimentally relevant geometry. We find that SPEC is able to capture the plasma response in the weakly nonlinear regime – meaning perturbation amplitudes below the threshold for break up of the separatrix and onset of secondary magnetic island formation – when around half of the total toroidal flux is enclosed in the volume containing the $q=2$ resonant surface. The observed dependence of SPEC solutions on input parameters, including toroidal flux and the number of volumes into which the plasma is partitioned, indicates that additional exploration of the underlying Multi-Region Relaxed MHD physics model is needed to constrain the choice of parameters. Nonetheless, this work suggests promising applications of SPEC to optimisation and fusion plasma design.

[1]  S. Hudson,et al.  Model for current drive induced crash cycles in W7-X , 2021, Nuclear Fusion.

[2]  M. Landreman,et al.  SIMSOPT: A flexible framework for stellarator optimization , 2021, J. Open Source Softw..

[3]  S. Hudson,et al.  Numerical study of δ-function current sheets arising from resonant magnetic perturbations , 2021, Physics of Plasmas.

[4]  S. Jardin,et al.  Approach to nonlinear magnetohydrodynamic simulations in stellarator geometry , 2021, Nuclear Fusion.

[5]  Yueqiang Liu,et al.  Error field correction strategies in preparation to MAST-U operation , 2020 .

[6]  P. Merkel,et al.  The JOREK non-linear extended MHD code and applications to large-scale instabilities and their control in magnetically confined fusion plasmas , 2020, Nuclear Fusion.

[7]  S. Hudson,et al.  Optimization of finite-build stellarator coils , 2020, Journal of Plasma Physics.

[8]  S. Hudson,et al.  Direct prediction of nonlinear tearing mode saturation using a variational principle , 2020 .

[9]  S. Hudson,et al.  Identification of important error fields in stellarators using the Hessian matrix method , 2019, Nuclear Fusion.

[10]  S. Hudson,et al.  Hessian matrix approach for determining error field sensitivity to coil deviations , 2018 .

[11]  T. Osborne,et al.  M3D-C1 simulations of the plasma response to RMPs in NSTX-U single-null and snowflake divertor configurations , 2017 .

[12]  Yasuhiro Suzuki HINT modeling of three-dimensional tokamaks with resonant magnetic perturbation , 2017 .

[13]  N. Logan,et al.  Self-consistent perturbed equilibrium with neoclassical toroidal torque in tokamaks , 2017 .

[14]  R. Nazikian,et al.  Effect of rotation zero-crossing on single-fluid plasma response to three-dimensional magnetic perturbations , 2017 .

[15]  R. Dewar,et al.  Fundamental Fluid Mechanics and Magnetohydrodynamics , 2015 .

[16]  T. Evans,et al.  Connection between plasma response and resonant magnetic perturbation (RMP) edge localized mode (ELM) suppression in DIII-D , 2015 .

[17]  S. Hudson,et al.  Variational formulation of relaxed and multi-region relaxed magnetohydrodynamics , 2015, 1509.00240.

[18]  T. Evans,et al.  Tokamak plasma high field side response to an n = 3 magnetic perturbation: a comparison of 3D equilibrium solutions from seven different codes , 2015 .

[19]  S. Hudson,et al.  Magnetic islands and singular currents at rational surfaces in three-dimensional magnetohydrodynamic equilibria , 2015 .

[20]  C. Hegna Effects of a weakly 3-D equilibrium on ideal magnetohydrodynamic instabilities , 2014 .

[21]  L. Lao,et al.  Role of plasma response in displacements of the tokamak edge due to applied non-axisymmetric fields , 2013 .

[22]  R. L. Dewar,et al.  Computation of multi-region relaxed magnetohydrodynamic equilibria , 2012, 1211.3072.

[23]  A. Turnbull Plasma response models for non-axisymmetric perturbations , 2012 .

[24]  W. A. Cooper,et al.  Comparisons of linear and nonlinear plasma response models for non-axisymmetric perturbationsa) , 2012 .

[25]  N. Ferraro Calculations of two-fluid linear response to non-axisymmetric fields in tokamaksa) , 2012 .

[26]  J. Callen Effects of 3D magnetic perturbations on toroidal plasmas , 2011 .

[27]  S. Hirshman,et al.  SIESTA: A scalable iterative equilibrium solver for toroidal applications , 2011 .

[28]  S. Hudson,et al.  Hamilton–Jacobi theory for continuation of magnetic field across a toroidal surface supporting a plasma pressure discontinuity , 2010, 1002.3499.

[29]  S. Hudson An Expression for the Temperature Gradient in Chaotic Fields , 2009 .

[30]  I. Joseph,et al.  RMP enhanced transport and rotational screening in simulations of DIII-D plasmas , 2008 .

[31]  J. S. deGrassie,et al.  RMP ELM suppression in DIII-D plasmas with ITER similar shapes and collisionalities , 2008 .

[32]  S. Hudson,et al.  Equilibria and stability in partially relaxed plasma–vacuum systems , 2007 .

[33]  A. Boozer,et al.  Computation of three-dimensional tokamak and spherical torus equilibria , 2007 .

[34]  Michel Howard Kevin,et al.  Development and application of HINT2 to helical system plasmas , 2006 .

[35]  Keith H. Burrell,et al.  Edge stability and transport control with resonant magnetic perturbations in collisionless tokamak plasmas , 2006 .

[36]  M E Fenstermacher,et al.  Suppression of large edge-localized modes in high-confinement DIII-D plasmas with a stochastic magnetic boundary. , 2004, Physical review letters.

[37]  A. Boozer,et al.  Magnetic islands and perturbed plasma equilibria , 2003 .

[38]  S. Kruger,et al.  NIMROD: A computational laboratory for studying nonlinear fusion magnetohydrodynamics , 2003 .

[39]  Bengt Lennartson,et al.  Feedback stabilization of nonaxisymmetric resistive wall modes in tokamaks. I. Electromagnetic model , 2000 .

[40]  A. Boozer Perturbed plasma equilibria , 1999 .

[41]  Henry S. Greenside,et al.  Calculation of three-dimensional MHD equilibria with islands and stochastic regions , 1986 .

[42]  J. Manickam,et al.  Three‐dimensional stellarator equilibrium as an Ohmic steady state , 1986 .

[43]  L. Lao,et al.  Reconstruction of current profile parameters and plasma shapes in tokamaks , 1985 .

[44]  Russell M. Kulsrud,et al.  Forced magnetic reconnection , 1985 .

[45]  J. C. Whitson,et al.  Steepest‐descent moment method for three‐dimensional magnetohydrodynamic equilibria , 1983 .

[46]  Harold P. Furth,et al.  Tearing mode in the cylindrical tokamak , 1973 .

[47]  S. Hudson,et al.  Numerical approach to δ-function current sheets arising from resonant magnetic perturbations , 2021 .

[48]  X. Garbet,et al.  Non-linear MHD modeling of edge localized mode cycles and mitigation by resonant magnetic perturbations , 2014 .

[49]  Joshua Breslau,et al.  Multiple timescale calculations of sawteeth and other global macroscopic dynamics of tokamak plasmas , 2012 .

[50]  J. Moser On invariant curves of area-preserving mappings of an anulus , 1962 .