A unified performance analysis of likelihood-informed subspace methods
暂无分享,去创建一个
Tiangang Cui | Xin T. Tong | T. Cui | X. Tong
[1] Dilin Wang,et al. Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm , 2016, NIPS.
[2] Y. Marzouk,et al. Greedy inference with layers of lazy maps , 2019, 1906.00031.
[3] Andrew M. Stuart,et al. Geometric MCMC for infinite-dimensional inverse problems , 2016, J. Comput. Phys..
[4] S. Bobkov,et al. From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities , 2000 .
[5] G. Stewart. The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators , 1980 .
[6] M. Ledoux,et al. Logarithmic Sobolev Inequalities , 2014 .
[7] Tiangang Cui,et al. A Stein variational Newton method , 2018, NeurIPS.
[8] T. Sullivan. Introduction to Uncertainty Quantification , 2015 .
[9] C. Villani,et al. Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .
[10] Tiangang Cui,et al. Certified dimension reduction in nonlinear Bayesian inverse problems , 2018, Math. Comput..
[11] Matthias Morzfeld,et al. MALA-within-Gibbs Samplers for High-Dimensional Distributions with Sparse Conditional Structure , 2020, SIAM J. Sci. Comput..
[12] Andrew M. Stuart,et al. Uncertainty Quantification and Weak Approximation of an Elliptic Inverse Problem , 2011, SIAM J. Numer. Anal..
[13] Youssef M. Marzouk,et al. Inference via Low-Dimensional Couplings , 2017, J. Mach. Learn. Res..
[14] G. Roberts,et al. Unbiased Monte Carlo: Posterior estimation for intractable/infinite-dimensional models , 2014, Bernoulli.
[15] Alexandre B. Tsybakov,et al. Introduction to Nonparametric Estimation , 2008, Springer series in statistics.
[16] Bart G. van Bloemen Waanders,et al. Fast Algorithms for Bayesian Uncertainty Quantification in Large-Scale Linear Inverse Problems Based on Low-Rank Partial Hessian Approximations , 2011, SIAM J. Sci. Comput..
[17] T. J. Sullivan,et al. Error bounds for some approximate posterior measures in Bayesian inference , 2019, ArXiv.
[18] Ilse C. F. Ipsen,et al. Low-Rank Matrix Approximations Do Not Need a Singular Value Gap , 2018, SIAM J. Matrix Anal. Appl..
[19] Esteban G. Tabak,et al. Data‐Driven Optimal Transport , 2016 .
[20] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[21] Jonas Wallin,et al. Generalized bounds for active subspaces , 2019, Electronic Journal of Statistics.
[22] Esteban G. Tabak,et al. Conditional density estimation and simulation through optimal transport , 2020, Machine Learning.
[23] S. Bobkov,et al. Weighted poincaré-type inequalities for cauchy and other convex measures , 2009, 0906.1651.
[24] O. Papaspiliopoulos,et al. Importance Sampling: Intrinsic Dimension and Computational Cost , 2015, 1511.06196.
[25] Georg Stadler,et al. Extreme-scale UQ for Bayesian inverse problems governed by PDEs , 2012, 2012 International Conference for High Performance Computing, Networking, Storage and Analysis.
[26] Yan Zhou,et al. Multilevel Sequential Monte Carlo with Dimension-Independent Likelihood-Informed Proposals , 2017, SIAM/ASA J. Uncertain. Quantification.
[27] Daniel Sanz-Alonso,et al. Importance Sampling and Necessary Sample Size: An Information Theory Approach , 2016, SIAM/ASA J. Uncertain. Quantification.
[28] S. Bobkov. Isoperimetric and Analytic Inequalities for Log-Concave Probability Measures , 1999 .
[29] C. Andrieu,et al. The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.
[30] H. Haario,et al. Markov chain Monte Carlo methods for high dimensional inversion in remote sensing , 2004 .
[31] E. Somersalo,et al. Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .
[32] Daniel Rudolf,et al. On a Generalization of the Preconditioned Crank–Nicolson Metropolis Algorithm , 2015, Found. Comput. Math..
[33] Ryan P. Adams,et al. The Gaussian Process Density Sampler , 2008, NIPS.
[34] E. Lieb,et al. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation , 1976 .
[35] S. Bobkov,et al. Poincaré’s inequalities and Talagrand’s concentration phenomenon for the exponential distribution , 1997 .
[36] Joel L. Horowitz,et al. Methodology and convergence rates for functional linear regression , 2007, 0708.0466.
[37] James Martin,et al. A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems, Part II: Stochastic Newton MCMC with Application to Ice Sheet Flow Inverse Problems , 2013, SIAM J. Sci. Comput..
[38] Tiangang Cui,et al. Bayesian calibration of a large‐scale geothermal reservoir model by a new adaptive delayed acceptance Metropolis Hastings algorithm , 2011 .
[39] Tosio Kato. A Short Introduction to Perturbation Theory for Linear Operators , 1982 .
[40] Robert Scheichl,et al. Multilevel Markov Chain Monte Carlo , 2019, SIAM Rev..
[41] Pierre Flener. Introduction to Uncertainty Quantification (UQ) , 2015 .
[42] James Martin,et al. A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..
[43] James Martin,et al. A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems Part I: The Linearized Case, with Application to Global Seismic Inversion , 2013, SIAM J. Sci. Comput..
[44] M. Dashti,et al. Rates of contraction of posterior distributions based on p-exponential priors , 2018, Bernoulli.
[45] G. Roberts,et al. MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.
[46] A. Beskos,et al. On the stability of sequential Monte Carlo methods in high dimensions , 2011, 1103.3965.
[47] Tiangang Cui,et al. Data-free likelihood-informed dimension reduction of Bayesian inverse problems , 2021, ArXiv.
[48] G. Menz,et al. Poincaré and logarithmic Sobolev inequalities by decomposition of the energy landscape , 2012, 1202.1510.
[49] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[50] M. Ledoux. A simple analytic proof of an inequality by P. Buser , 1994 .
[51] Marco A. Iglesias,et al. Well-posed Bayesian geometric inverse problems arising in subsurface flow , 2014, 1401.5571.
[52] Tiangang Cui,et al. Deep Composition of Tensor-Trains Using Squared Inverse Rosenblatt Transports , 2020, Foundations of Computational Mathematics.
[53] Tiangang Cui,et al. Optimal Low-rank Approximations of Bayesian Linear Inverse Problems , 2014, SIAM J. Sci. Comput..
[54] Matthias Morzfeld,et al. Localization for MCMC: sampling high-dimensional posterior distributions with local structure , 2017, J. Comput. Phys..
[55] Themistoklis P. Sapsis,et al. Probabilistic Description of Extreme Events in Intermittently Unstable Dynamical Systems Excited by Correlated Stochastic Processes , 2014, SIAM/ASA J. Uncertain. Quantification.
[56] Tengyao Wang,et al. A useful variant of the Davis--Kahan theorem for statisticians , 2014, 1405.0680.
[57] C. Andrieu,et al. Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms , 2012, 1210.1484.
[58] E. Tabak,et al. A Family of Nonparametric Density Estimation Algorithms , 2013 .
[59] Kari Karhunen,et al. Über lineare Methoden in der Wahrscheinlichkeitsrechnung , 1947 .
[60] Ton Steerneman,et al. ON THE TOTAL VARIATION AND HELLINGER DISTANCE BETWEEN SIGNED MEASURES - AN APPLICATION TO PRODUCT MEASURES , 1983 .
[61] C. Villani,et al. Weighted Csiszár-Kullback-Pinsker inequalities and applications to transportation inequalities , 2005 .