Conformal Einstein evolution
暂无分享,去创建一个
[1] Roger Penrose,et al. Zero rest-mass fields including gravitation: asymptotic behaviour , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[2] General relativistic scalar-field models and asymptotic flatness , 1994, gr-qc/9408012.
[3] R. Geroch,et al. Asymptotically Simple Does Not Imply Asymptotically Minkowskian. , 1978 .
[4] J. Kánnár. On the existence of C∞ solutions to the asymptotic characteristic initial value problem in general relativity , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[5] H. Friedrich,et al. Calculating asymptotic quantities near space‐like and null infinity from Cauchy data , 2000, Annalen der Physik.
[6] Conformal Geodesics on Vacuum Space-times , 2002, gr-qc/0201006.
[7] George F. R. Ellis,et al. The Large Scale Structure of Space-Time , 2023 .
[8] K. Ogiue. Theory of conformal connections , 1967 .
[9] R. Sachs. Gravitational waves in general relativity VIII , 1962 .
[10] R. Penrose,et al. The singularities of gravitational collapse and cosmology , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[11] P. Chruściel,et al. Solutions of wave equations in the radiation regime , 2002, math/0202015.
[12] H. Friedrich,et al. The Initial Boundary Value Problem for Einstein's Vacuum Field Equation , 1999 .
[13] H. Friedrich. Existence and structure of past asymptotically simple solutions of Einstein's field equations with positive cosmological constant. , 1986 .
[14] Post-Newtonian Gravitational Radiation , 2000, gr-qc/0004012.
[15] H. Friedrich. Evolution equations for gravitating ideal fluid bodies in general relativity , 1998 .
[16] G. Ellis,et al. Classification of singular space-times , 1977 .
[17] L. Andersson,et al. dS/CFT and spacetime topology , 2002, hep-th/0202161.
[18] H. Friedrich. On the existence of analytic null asymptotically flat solutions of Einstein’s vacuum field equations , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[19] H. Friedrich. Gravitational fields near space-like and null infinity , 1998 .
[20] Peter Huebner. From Now to Timelike Infinity on a Finite Grid , 2001 .
[21] R. Penrose. Singularities of spacetime , 1978 .
[22] R. Wald,et al. Existence of radiating Einstein-Maxwell solutions which are C∞ on all of I+ and I$ , 1989 .
[23] H. Friedrich. On the regular and the asymptotic characteristic initial value problem for Einstein’s vacuum field equations , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[24] Einstein's equation and geometric asymptotics , 1998, gr-qc/9804009.
[25] B. Schmidt,et al. Conformal geodesics in general relativity , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[26] Y. Choquet-bruhat,et al. The Cauchy Problem , 1980 .
[27] K. Friedrichs. Symmetric hyperbolic linear differential equations , 1954 .
[28] H. Friedrich. On the global existence and the asymptotic behavior of solutions to the Einstein-Maxwell-Yang-Mills equations , 1991 .
[29] A. Ashtekar,et al. On the existence of solutions to Einstein's equation with non-zero Bondi news , 1981 .
[30] B. Berger. Numerical Approaches to Spacetime Singularities , 1998, Living reviews in relativity.
[31] Helmut Friedrich,et al. On the hyperbolicity of Einstein's and other gauge field equations , 1985 .
[32] The Cauchy problem for the Einstein equations , 2000, gr-qc/0002074.
[33] R. Penrose,et al. 10 EXACT GRAVITATIONALLY-CONSERVED QUANTITIES , 1965 .
[34] H. Friedrich. Einstein equations and conformal structure: Existence of Anti-de Sitter-type space-times , 1995 .
[35] R. Penrose,et al. New conservation laws for zero rest-mass fields in asymptotically flat space-time , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[36] K. Thorne. The theory of gravitational radiation - an introductory review , 1983 .
[37] M. Sugiura. Unitary Representations and Harmonic Analysis , 1990 .
[38] A. Ashtekar. Asymptotic Properties of Isolated Systems: Recent Developments , 1984 .
[39] Helmut Friedrich,et al. Hyperbolic reductions for Einstein's equations , 1996 .
[40] R. Sachs. Gravitational waves in general relativity. VI. The outgoing radiation condition , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[41] H. Friedrich. On static and radiative space-times , 1988 .
[42] H. Friedrich. On purely radiative space-times , 1986 .
[43] H. Friedrich. On the existence ofn-geodesically complete or future complete solutions of Einstein's field equations with smooth asymptotic structure , 1986 .
[44] R. Sachs. On the Characteristic Initial Value Problem in Gravitational Theory , 1962 .
[45] Helmut Friedrich,et al. Cauchy problems for the conformal vacuum field equations in general relativity , 1983 .
[46] H. Friedrich. The asymptotic characteristic initial value problem for Einstein’s vacuum field equations as an initial value problem for a first-order quasilinear symmetric hyperbolic system , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[47] R. Penrose,et al. Gravitational Collapse : The Role of General Relativity 1 , 2002 .
[48] B. Carter. Global structure of the Kerr family of gravitational fields , 1968 .
[49] Tosio Kato,et al. The Cauchy problem for quasi-linear symmetric hyperbolic systems , 1975 .
[50] H. Weyl. Mathematische Analyse des Raumproblems: Vorlesungen, gehalten in Barcelona und Madrid , 1923 .
[51] Roger Penrose,et al. An Approach to Gravitational Radiation by a Method of Spin Coefficients , 1962 .
[52] R. Penrose. Gravitational collapse and spacetime singularities , 1965 .
[53] Initial data for stationary spacetimes near spacelike infinity , 2001, gr-qc/0107018.
[54] Michael E. Taylor,et al. Partial Differential Equations , 1996 .
[55] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[56] J. Stewart,et al. Characteristic initial data and wavefront singularities in general relativity , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[57] R. Penrose. Relativistic Symmetry Groups , 1974 .
[58] J. Dieudonne. Treatise on Analysis , 1969 .
[59] Justin Corvino. Scalar Curvature Deformation and a Gluing Construction for the Einstein Constraint Equations , 2000 .
[60] R. Wald. Gravitational Collapse and Cosmic Censorship , 1997, gr-qc/9710068.
[61] L. Andersson,et al. On “hyperboloidal” Cauchy data for vacuum einstein equations and obstructions to smoothness of Scri , 1994 .
[62] J.dieudonne. Treatise On Analysis Vol-ii , 1976 .
[63] F. Wilczek,et al. Internal Structure of Black Holes , 1995, hep-th/9511064.
[64] G. Huisken,et al. The Riemannian Penrose inequality , 1997 .
[65] R. Beig,et al. Proof of a multipole conjecture due to Geroch , 1980 .
[66] Roger Penrose,et al. Asymptotic properties of fields and space-times , 1963 .
[67] Hermann Bondi,et al. Gravitational waves in general relativity, VII. Waves from axi-symmetric isolated system , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[68] Proof of the Riemannian Penrose Conjecture Using the Positive Mass Theorem , 1999, math/9911173.
[69] R. Sachs. Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[70] H. Friedrich,et al. Asymptotically Flat Initial Data¶with Prescribed Regularity at Infinity , 2001, gr-qc/0102047.
[71] Helmut Friedrich,et al. On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein's field equations , 1992 .