Conformal Einstein evolution

We discuss various properties of the conformal field equations and their consequences for the asymptotic structure of space-times.

[1]  Roger Penrose,et al.  Zero rest-mass fields including gravitation: asymptotic behaviour , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  General relativistic scalar-field models and asymptotic flatness , 1994, gr-qc/9408012.

[3]  R. Geroch,et al.  Asymptotically Simple Does Not Imply Asymptotically Minkowskian. , 1978 .

[4]  J. Kánnár On the existence of C∞ solutions to the asymptotic characteristic initial value problem in general relativity , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  H. Friedrich,et al.  Calculating asymptotic quantities near space‐like and null infinity from Cauchy data , 2000, Annalen der Physik.

[6]  Conformal Geodesics on Vacuum Space-times , 2002, gr-qc/0201006.

[7]  George F. R. Ellis,et al.  The Large Scale Structure of Space-Time , 2023 .

[8]  K. Ogiue Theory of conformal connections , 1967 .

[9]  R. Sachs Gravitational waves in general relativity VIII , 1962 .

[10]  R. Penrose,et al.  The singularities of gravitational collapse and cosmology , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[11]  P. Chruściel,et al.  Solutions of wave equations in the radiation regime , 2002, math/0202015.

[12]  H. Friedrich,et al.  The Initial Boundary Value Problem for Einstein's Vacuum Field Equation , 1999 .

[13]  H. Friedrich Existence and structure of past asymptotically simple solutions of Einstein's field equations with positive cosmological constant. , 1986 .

[14]  Post-Newtonian Gravitational Radiation , 2000, gr-qc/0004012.

[15]  H. Friedrich Evolution equations for gravitating ideal fluid bodies in general relativity , 1998 .

[16]  G. Ellis,et al.  Classification of singular space-times , 1977 .

[17]  L. Andersson,et al.  dS/CFT and spacetime topology , 2002, hep-th/0202161.

[18]  H. Friedrich On the existence of analytic null asymptotically flat solutions of Einstein’s vacuum field equations , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[19]  H. Friedrich Gravitational fields near space-like and null infinity , 1998 .

[20]  Peter Huebner From Now to Timelike Infinity on a Finite Grid , 2001 .

[21]  R. Penrose Singularities of spacetime , 1978 .

[22]  R. Wald,et al.  Existence of radiating Einstein-Maxwell solutions which are C∞ on all of I+ and I$ , 1989 .

[23]  H. Friedrich On the regular and the asymptotic characteristic initial value problem for Einstein’s vacuum field equations , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[24]  Einstein's equation and geometric asymptotics , 1998, gr-qc/9804009.

[25]  B. Schmidt,et al.  Conformal geodesics in general relativity , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[26]  Y. Choquet-bruhat,et al.  The Cauchy Problem , 1980 .

[27]  K. Friedrichs Symmetric hyperbolic linear differential equations , 1954 .

[28]  H. Friedrich On the global existence and the asymptotic behavior of solutions to the Einstein-Maxwell-Yang-Mills equations , 1991 .

[29]  A. Ashtekar,et al.  On the existence of solutions to Einstein's equation with non-zero Bondi news , 1981 .

[30]  B. Berger Numerical Approaches to Spacetime Singularities , 1998, Living reviews in relativity.

[31]  Helmut Friedrich,et al.  On the hyperbolicity of Einstein's and other gauge field equations , 1985 .

[32]  The Cauchy problem for the Einstein equations , 2000, gr-qc/0002074.

[33]  R. Penrose,et al.  10 EXACT GRAVITATIONALLY-CONSERVED QUANTITIES , 1965 .

[34]  H. Friedrich Einstein equations and conformal structure: Existence of Anti-de Sitter-type space-times , 1995 .

[35]  R. Penrose,et al.  New conservation laws for zero rest-mass fields in asymptotically flat space-time , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[36]  K. Thorne The theory of gravitational radiation - an introductory review , 1983 .

[37]  M. Sugiura Unitary Representations and Harmonic Analysis , 1990 .

[38]  A. Ashtekar Asymptotic Properties of Isolated Systems: Recent Developments , 1984 .

[39]  Helmut Friedrich,et al.  Hyperbolic reductions for Einstein's equations , 1996 .

[40]  R. Sachs Gravitational waves in general relativity. VI. The outgoing radiation condition , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[41]  H. Friedrich On static and radiative space-times , 1988 .

[42]  H. Friedrich On purely radiative space-times , 1986 .

[43]  H. Friedrich On the existence ofn-geodesically complete or future complete solutions of Einstein's field equations with smooth asymptotic structure , 1986 .

[44]  R. Sachs On the Characteristic Initial Value Problem in Gravitational Theory , 1962 .

[45]  Helmut Friedrich,et al.  Cauchy problems for the conformal vacuum field equations in general relativity , 1983 .

[46]  H. Friedrich The asymptotic characteristic initial value problem for Einstein’s vacuum field equations as an initial value problem for a first-order quasilinear symmetric hyperbolic system , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[47]  R. Penrose,et al.  Gravitational Collapse : The Role of General Relativity 1 , 2002 .

[48]  B. Carter Global structure of the Kerr family of gravitational fields , 1968 .

[49]  Tosio Kato,et al.  The Cauchy problem for quasi-linear symmetric hyperbolic systems , 1975 .

[50]  H. Weyl Mathematische Analyse des Raumproblems: Vorlesungen, gehalten in Barcelona und Madrid , 1923 .

[51]  Roger Penrose,et al.  An Approach to Gravitational Radiation by a Method of Spin Coefficients , 1962 .

[52]  R. Penrose Gravitational collapse and spacetime singularities , 1965 .

[53]  Initial data for stationary spacetimes near spacelike infinity , 2001, gr-qc/0107018.

[54]  Michael E. Taylor,et al.  Partial Differential Equations , 1996 .

[55]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[56]  J. Stewart,et al.  Characteristic initial data and wavefront singularities in general relativity , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[57]  R. Penrose Relativistic Symmetry Groups , 1974 .

[58]  J. Dieudonne Treatise on Analysis , 1969 .

[59]  Justin Corvino Scalar Curvature Deformation and a Gluing Construction for the Einstein Constraint Equations , 2000 .

[60]  R. Wald Gravitational Collapse and Cosmic Censorship , 1997, gr-qc/9710068.

[61]  L. Andersson,et al.  On “hyperboloidal” Cauchy data for vacuum einstein equations and obstructions to smoothness of Scri , 1994 .

[62]  J.dieudonne Treatise On Analysis Vol-ii , 1976 .

[63]  F. Wilczek,et al.  Internal Structure of Black Holes , 1995, hep-th/9511064.

[64]  G. Huisken,et al.  The Riemannian Penrose inequality , 1997 .

[65]  R. Beig,et al.  Proof of a multipole conjecture due to Geroch , 1980 .

[66]  Roger Penrose,et al.  Asymptotic properties of fields and space-times , 1963 .

[67]  Hermann Bondi,et al.  Gravitational waves in general relativity, VII. Waves from axi-symmetric isolated system , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[68]  Proof of the Riemannian Penrose Conjecture Using the Positive Mass Theorem , 1999, math/9911173.

[69]  R. Sachs Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[70]  H. Friedrich,et al.  Asymptotically Flat Initial Data¶with Prescribed Regularity at Infinity , 2001, gr-qc/0102047.

[71]  Helmut Friedrich,et al.  On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein's field equations , 1992 .