Numerical simulation for the solitary wave of Zakharov–Kuznetsov equation based on lattice Boltzmann method

Abstract The Zakharov–Kuznetsov equation is considered, which is an equation describing two dimensional weakly nonlinear ion-acoustic waves in plasma. We focus on using the lattice Boltzmann method to study the Zakharov–Kuznetsov equation. A lattice Boltzmann model is constructed. In numerical experiments, the propagation of the single solitary wave and the collision of double solitary waves are simulated. The results with different parameters are investigated and compared.

[1]  R. Benzi,et al.  The lattice Boltzmann equation: theory and applications , 1992 .

[2]  John G. Georgiadis,et al.  Migration of a van der Waals bubble: Lattice Boltzmann formulation , 2001 .

[3]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation , 1993, Journal of Fluid Mechanics.

[4]  R. Benzi,et al.  Lattice Gas Dynamics with Enhanced Collisions , 1989 .

[5]  Irina Ginzburg,et al.  Variably saturated flow described with the anisotropic Lattice Boltzmann methods , 2006 .

[6]  E. Infeld,et al.  Self-focusing of nonlinear ion-acoustic waves and solitons in magnetized plasmas. Part 2. Numerical simulations, two-soliton collisions , 1987 .

[7]  Aly R. Seadawy,et al.  Stability analysis for Zakharov-Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma , 2014, Comput. Math. Appl..

[8]  Guangwu Yan,et al.  Lattice Boltzmann method for one and two-dimensional Burgers equation ☆ , 2008 .

[9]  Huimin Wang,et al.  Numerical simulation of the ion-acoustic solitary waves in plasma based on lattice Boltzmann method , 2015 .

[10]  Devendra Kumar,et al.  Numerical computation of nonlinear fractional Zakharov–Kuznetsov equation arising in ion-acoustic waves , 2014 .

[11]  Ping Dong,et al.  Lattice Boltzmann schemes for the nonlinear Schrödinger equation. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Sauro Succi,et al.  Nonlinear Stability of Compressible Thermal Lattice BGK Models , 1999, SIAM J. Sci. Comput..

[13]  Michihisa Tsutahara,et al.  Lattice Boltzmann method for the compressible Euler equations. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Bo Tian,et al.  Analytical study of the nonlinear Schrödinger equation with an arbitrary linear time-dependent potential in quasi-one-dimensional Bose–Einstein condensates , 2008 .

[15]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[16]  Aly R. Seadawy,et al.  The Solutions of the Boussinesq and Generalized Fifth-Order KdV Equations by Using the Direct Algebraic Method , 2012 .

[17]  Miki Hirabayashi,et al.  The lattice BGK model for the Poisson equation , 2001 .

[18]  S. Succi,et al.  Three-Dimensional Flows in Complex Geometries with the Lattice Boltzmann Method , 1989 .

[19]  Bo Yan,et al.  Lattice Boltzmann Model Based on the Rebuilding-Divergency Method for the Laplace Equation and the Poisson Equation , 2011, J. Sci. Comput..

[20]  Anjan Biswas,et al.  Solitary wave solution of the Zakharov–Kuznetsov equation in plasmas with power law nonlinearity , 2010 .

[21]  Zhenhua Chai,et al.  A novel lattice Boltzmann model for the Poisson equation , 2008 .

[22]  Yannis Kourakis,et al.  Nonlinear Dynamics of Rotating Multi-Component Pair Plasmas and e-p-i Plasmas , 2009 .

[23]  Yeomans,et al.  Lattice Boltzmann simulations of liquid-gas and binary fluid systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  S Succi,et al.  Numerical validation of the quantum lattice Boltzmann scheme in two and three dimensions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  S. Zaleski,et al.  Lattice Boltzmann model of immiscible fluids. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[26]  Ji-Huan He Application of homotopy perturbation method to nonlinear wave equations , 2005 .

[27]  Song Song-he,et al.  Explicit multi-symplectic method for the Zakharov—Kuznetsov equation , 2012 .

[28]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[29]  Cheng Zhang,et al.  Multisoliton solutions in terms of double Wronskian determinant for a generalized variable-coefficient nonlinear Schrödinger equation from plasma physics, arterial mechanics, fluid dynamics and optical communications , 2008 .

[30]  Bo Tian,et al.  Soliton solutions and interactions of the Zakharov-Kuznetsov equation in the electron-positron-ion plasmas , 2011 .

[31]  O. Filippova,et al.  Lattice-Boltzmann simulation of gas-particle flow in filters , 1997 .

[32]  S Succi,et al.  Fast lattice Boltzmann solver for relativistic hydrodynamics. , 2010, Physical review letters.

[33]  Robert S. Bernard,et al.  Boundary conditions for the lattice Boltzmann method , 1996 .

[34]  Sauro Succi,et al.  Lattice Boltzmann equation for quantum mechanics , 1993, comp-gas/9304002.

[35]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[36]  Guangwu Yan,et al.  Lattice Boltzmann model for the interaction of (2+1)-dimensional solitons in generalized Gross–Pitaevskii equation , 2016 .

[37]  Fadi Awawdeh,et al.  New exact solitary wave solutions of the Zakharov-Kuznetsov equation in the electron-positron-ion plasmas , 2012, Appl. Math. Comput..

[38]  Chenghai Sun,et al.  Lattice-Boltzmann models for high speed flows , 1998 .

[39]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results , 1993, Journal of Fluid Mechanics.

[40]  Succi Numerical solution of the Schrödinger equation using discrete kinetic theory. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  H. Shah,et al.  Nonlinear Zakharov–Kuznetsov equation for obliquely propagating two-dimensional ion-acoustic solitary waves in a relativistic, rotating magnetized electron-positron-ion plasma , 2005 .

[42]  Huimin Wang,et al.  A lattice Boltzmann model for the ion- and electron-acoustic solitary waves in beam-plasma system , 2016, Appl. Math. Comput..

[43]  Chang Lin,et al.  The formally variable separation approach for the modified Zakharov–Kuznetsov equation , 2007 .

[44]  Yang Guangwu A Lattice Boltzmann Equation for Waves , 2000 .

[45]  Shiyi Chen,et al.  Lattice Boltzmann computations for reaction‐diffusion equations , 1993 .

[46]  Qing Xiao,et al.  New exact solitary wave and multiple soliton solutions of quantum Zakharov-Kuznetsov equation , 2010, Appl. Math. Comput..

[47]  Aly R. Seadawy,et al.  New exact solutions for the KdV equation with higher order nonlinearity by using the variational method , 2011, Comput. Math. Appl..

[48]  Guangwu Yan,et al.  Lattice Boltzmann model for wave propagation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  J. Zhou Lattice Boltzmann Methods for Shallow Water Flows , 2003 .

[50]  Sauro Succi Lattice Quantum Mechanics: An Application to Bose–Einstein Condensation , 1998 .

[51]  Shan,et al.  Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[52]  Guangwu Yan,et al.  Lattice Bhatnagar—Gross—Krook model for the Lorenz attractor , 2001 .

[53]  Shan,et al.  Lattice Boltzmann model for simulating flows with multiple phases and components. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[54]  Aly R. Seadawy,et al.  Traveling wave solutions for some coupled nonlinear evolution equations , 2013, Math. Comput. Model..

[55]  Luo Li-Shi,et al.  Theory of the lattice Boltzmann method: Lattice Boltzmann models for non-ideal gases , 2001 .

[56]  Skordos,et al.  Initial and boundary conditions for the lattice Boltzmann method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[57]  Yeomans,et al.  Lattice Boltzmann simulation of nonideal fluids. , 1995, Physical review letters.

[58]  Anup Bandyopadhyay,et al.  Existence and stability of alternative ion-acoustic solitary wave solution of the combined MKdV-KdV-ZK equation in a magnetized nonthermal plasma consisting of warm adiabatic ions , 2007 .

[59]  S Succi,et al.  Ground-state computation of Bose-Einstein condensates by an imaginary-time quantum lattice Boltzmann scheme. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  John Abraham,et al.  Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow , 2007, J. Comput. Phys..