Turbulence mitigation in maximum-J stellarators with electron-density gradient

In fusion devices, the geometry of the confining magnetic field has a significant impact on the instabilities that drive turbulent heat loss. This is especially true of stellarators, where the density-gradient-driven branch of the ‘trapped electron mode’ (TEM) is predicted to be linearly stable if the magnetic field has the maximum-J property, as is very approximately the case in certain magnetic configurations of the Wendelstein 7-X experiment (W7-X). Here we show, using both analytical theory and simulations, that the benefits of the optimisation of W7-X also serve to mitigate ion-temperature-gradient (ITG) modes as long as an electron density gradient is present. We find that the effect indeed carries over to nonlinear numerical simulations, where W7-X has low TEM-driven transport, and reduced ITG turbulence in the presence of a density gradient, giving theoretical support for the existence of enhanced confinement regimes, in the presence of strong density gradients (e.g. hydrogen pellet or neutral beam injection).

[1]  David L. T. Anderson,et al.  Experimental demonstration of improved neoclassical transport with quasihelical symmetry. , 2007, Physical review letters.

[2]  David L. T. Anderson,et al.  The Helically Symmetric Experiment, (HSX) Goals, Design and Status , 1995 .

[3]  P. Helander Available energy and ground states of collisionless plasmas , 2017, Journal of Plasma Physics.

[4]  J. Nührenberg,et al.  Development of quasi-isodynamic stellarators , 2010 .

[5]  M. Pueschel,et al.  Predicting the critical gradient of ITG turbulence in fusion plasmas , 2021, Nuclear Fusion.

[6]  P. Helander,et al.  The universal instability in general geometry , 2015, 1506.09098.

[7]  Saturation physics of threshold heat-flux reduction , 2021, Physics of Plasmas.

[8]  J. Nührenberg,et al.  Quasi-Helically Symmetric Toroidal Stellarators , 1988 .

[9]  M. N. Rosenbluth,et al.  Instabilities due to Temperature Gradients in Complex Magnetic Field Configurations , 1967 .

[10]  Y. Turkin,et al.  Suppression of electrostatic micro-instabilities in maximum-J stellarators , 2020, Plasma Physics and Controlled Fusion.

[11]  P. Helander,et al.  Collisionless microinstabilities in stellarators. II. Numerical simulations , 2013, 1311.3127.

[12]  M. Pueschel,et al.  A comparison of turbulent transport in a quasi-helical and a quasi-axisymmetric stellarator , 2019, Journal of Plasma Physics.

[13]  C. Hegna,et al.  Theory of ITG turbulent saturation in stellarators: Identifying mechanisms to reduce turbulent transport , 2017 .

[14]  Chio Cheng,et al.  Unstable universal drift eigenmodes in toroidal plasmas , 1980 .

[15]  M. Pueschel,et al.  Turbulence Mechanisms of Enhanced Performance Stellarator Plasmas. , 2020, Physical review letters.

[16]  Frank Jenko,et al.  Electron temperature gradient driven turbulence , 1999 .

[17]  J. L. Luxon,et al.  A design retrospective of the DIII-D tokamak , 2002 .

[18]  P Helander,et al.  Resilience of quasi-isodynamic stellarators against trapped-particle instabilities. , 2012, Physical review letters.

[19]  M. Pueschel,et al.  Nonlinear Electromagnetic Stabilization of Plasma Microturbulence. , 2018, Physical review letters.

[20]  F. Sardei,et al.  Physics and Engineering Design for Wendelstein VII-X , 1990 .

[21]  J. Connor,et al.  Collisionless microinstabilities in stellarators. III. The ion-temperature-gradient mode , 2013, 1312.2424.

[22]  M. Pueschel,et al.  Gyrokinetic studies of trapped electron mode turbulence in the Helically Symmetric eXperiment stellarator , 2015 .

[23]  John R. Terry,et al.  Magnetic configuration effects on the Wendelstein 7-X stellarator , 2018, Nature Physics.

[24]  P. Helander,et al.  Bootstrap current and neoclassical transport in quasi-isodynamic stellarators , 2009 .

[25]  J. Connor,et al.  Kinetic-ballooning-mode theory in general geometry , 1980 .

[26]  J. Connor,et al.  Collisionless microinstabilities in stellarators. Part 4. The ion-driven trapped-electron mode , 2017, Journal of Plasma Physics.

[27]  Per Helander,et al.  Theory of plasma confinement in non-axisymmetric magnetic fields , 2014, Reports on progress in physics. Physical Society.

[28]  P. Helander Available energy of magnetically confined plasmas , 2020, Journal of Plasma Physics.

[29]  J. E. Román,et al.  Stellarator microinstabilities and turbulence at low magnetic shear , 2018, Journal of Plasma Physics.

[30]  Advances in stellarator gyrokinetics , 2015 .

[31]  Universal instability for wavelengths below the ion Larmor scale. , 2014, Physical review letters.

[32]  Frank Jenko,et al.  Stellarator and tokamak plasmas: a comparison , 2012 .

[33]  H.-S. Bosch,et al.  Towards assembly completion and preparation of experimental campaigns of Wendelstein 7-X in the perspective of a path to a stellarator fusion power plant , 2013 .

[34]  Frank Jenko,et al.  A geometry interface for gyrokinetic microturbulence investigations in toroidal configurations , 2009 .

[35]  L. Villard,et al.  Toroidal Universal Drift Instability: A Global Gyrokinetic Study , 2010 .

[36]  D. Hatch,et al.  Regimes of weak ITG/TEM modes for transport barriers without velocity shear , 2019 .

[37]  P. Helander,et al.  Collisionless microinstabilities in stellarators I - analytical theory of trapped-particle modes , 2013, 1311.3095.

[38]  M. Rosenbluth Low‐Frequency Limit of Interchange Instability , 1968 .

[39]  M. Beurskens,et al.  High-performance plasmas after pellet injections in Wendelstein 7-X , 2020, Nuclear Fusion.

[40]  W. Dorland,et al.  Generalized universal instability: transient linear amplification and subcritical turbulence , 2015, Journal of Plasma Physics.

[41]  M. Pueschel,et al.  Saturation scalings of toroidal ion temperature gradient turbulence , 2018 .

[42]  Allen H. Boozer,et al.  Quasi-helical symmetry in stellarators , 1995 .

[43]  Matt Landreman,et al.  Comparison of particle trajectories and collision operators for collisional transport in nonaxisymmetric plasmas , 2013, 1312.6058.

[44]  R. J. Hastie,et al.  High mode number stability of an axisymmetric toroidal plasma , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[45]  J. Connor,et al.  Stability of general plasma equilibria. III , 1980 .

[46]  A. Wakasa,et al.  Results from the International Collaboration on Neoclassical Transport in Stellarators (ICNTS) , 2009 .

[47]  Douglas P. Boyd,et al.  PHYSICS AND ENGINEERING , 1979 .