DOUGLAS–RACHFORD FEASIBILITY METHODS FOR MATRIX COMPLETION PROBLEMS

Abstract In this paper, we give general recommendations for successful application of the Douglas–Rachford reflection method to convex and nonconvex real matrix completion problems. These guidelines are demonstrated by various illustrative examples.

[1]  Jonathan M. Borwein,et al.  Modelling and Simulation of Seasonal Rainfall Using the Principle of Maximum Entropy , 2014, Entropy.

[2]  D. Russell Luke,et al.  Nonconvex Notions of Regularity and Convergence of Fundamental Algorithms for Feasibility Problems , 2012, SIAM J. Optim..

[3]  Jonathan M. Borwein,et al.  Global convergence of a non-convex Douglas–Rachford iteration , 2012, J. Glob. Optim..

[4]  Jonathan M. Borwein,et al.  The Cyclic Douglas-Rachford Method for Inconsistent Feasibility Problems , 2013, 1310.2195.

[5]  øöö Blockinø Phase retrieval, error reduction algorithm, and Fienup variants: A view from convex optimization , 2002 .

[6]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[7]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..

[8]  Monique Laurent,et al.  Matrix Completion Problems , 2009, Encyclopedia of Optimization.

[9]  Are Hjrungnes,et al.  Complex-Valued Matrix Derivatives: With Applications in Signal Processing and Communications , 2011 .

[10]  Heinz H. Bauschke,et al.  Dykstra's Alternating Projection Algorithm for Two Sets , 1994 .

[11]  Heinz H. Bauschke,et al.  Hybrid projection-reflection method for phase retrieval. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  J. Cintrat,et al.  Measurement of long-range interatomic distances by solid-state tritium-NMR spectroscopy. , 2010, Journal of the American Chemical Society.

[13]  R. Mathar,et al.  A cyclic projection algorithm via duality , 1989 .

[14]  Thomas L. Hayden,et al.  Approximation by matrices positive semidefinite on a subspace , 1988 .

[15]  P. Schönemann,et al.  A generalized solution of the orthogonal procrustes problem , 1966 .

[16]  Adrian S. Lewis,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[17]  Pawoumodom L. Takouda Un problème d'approximation matricielle : quelle est la matrice bistochastique la plus proche d'une matrice donnée ? , 2005, RAIRO Oper. Res..

[18]  Jonathan M. Borwein,et al.  Entropic Regularization of the ℓ 0 Function , 2011, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[19]  Jonathan M. Borwein,et al.  The Douglas-Rachford Algorithm in the Absence of Convexity , 2011, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[20]  Nathan Krislock,et al.  Explicit Sensor Network Localization using Semidefinite Representations and Facial Reductions , 2010, SIAM J. Optim..

[21]  N. Higham Computing the polar decomposition with applications , 1986 .

[22]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[23]  Erik G. Ström,et al.  Cooperative Wireless Sensor Network Positioning via Implicit Convex Feasibility , 2013, IEEE Transactions on Signal Processing.

[24]  Stella Stylianou,et al.  On skew-Hadamard matrices , 2008, Discret. Math..

[25]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[26]  I. J. Schoenberg Remarks to Maurice Frechet's Article ``Sur La Definition Axiomatique D'Une Classe D'Espace Distances Vectoriellement Applicable Sur L'Espace De Hilbert , 1935 .

[27]  W. Glunt,et al.  An alternating projection algorithm for computing the nearest euclidean distance matrix , 1990 .

[28]  Jonathan M. Borwein,et al.  Recent Results on Douglas–Rachford Methods for Combinatorial Optimization Problems , 2013, J. Optim. Theory Appl..

[29]  Bernhard Schmidt,et al.  New restrictions on possible orders of circulant Hadamard matrices , 2012, Des. Codes Cryptogr..

[30]  C. Richard Johnson,et al.  Matrix Completion Problems: A Survey , 1990 .

[31]  K. Horadam Hadamard Matrices and Their Applications , 2006 .

[32]  Jon C. Dattorro,et al.  Convex Optimization & Euclidean Distance Geometry , 2004 .

[33]  V. Mehrmann,et al.  A MULTISHIFT ALGORITHM FOR THE NUMERICAL SOLUTION OF ALGEBRAIC RICCATI EQUATIONS , 1993 .

[34]  Jonathan M. Borwein,et al.  A Cyclic Douglas–Rachford Iteration Scheme , 2013, J. Optim. Theory Appl..

[35]  A. Hjørungnes Complex-Valued Matrix Derivatives: Applications in Signal Processing and Communications , 2011 .

[36]  Yunmei Chen,et al.  Projection Onto A Simplex , 2011, 1101.6081.

[37]  Heinz H. Bauschke,et al.  On the local convergence of the Douglas–Rachford algorithm , 2014, 1401.6188.

[38]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[39]  B. Sims,et al.  Alternating projections in CAT(0) spaces , 2011 .

[40]  Peter G. Casazza,et al.  Phase retrieval , 2015, SPIE Optical Engineering + Applications.

[41]  Petros Drineas,et al.  Distance Matrix Reconstruction from Incomplete Distance Information for Sensor Network Localization , 2006, 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks.

[42]  R. Dykstra,et al.  A Method for Finding Projections onto the Intersection of Convex Sets in Hilbert Spaces , 1986 .

[43]  Razvan Andonie,et al.  Molecular distance geometry optimization using geometric build-up and evolutionary techniques on GPU , 2012, 2012 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB).

[44]  Heinz H. Bauschke,et al.  The method of cyclic projections for closed convex sets in Hilbert space , 1997 .

[45]  Heinz H. Bauschke,et al.  Finding best approximation pairs relative to two closed convex sets in Hilbert spaces , 2004, J. Approx. Theory.

[46]  H BauschkeHeinz,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996 .

[47]  Marcos Raydan,et al.  Robust Stopping Criteria for Dykstra's Algorithm , 2005, SIAM J. Sci. Comput..

[48]  Heinz H. Bauschke,et al.  On the convergence of von Neumann's alternating projection algorithm for two sets , 1993 .

[49]  Brendan D. McKay,et al.  Hadamard equivalence via graph isomorphism , 1979, Discret. Math..

[50]  M. Raydan,et al.  Alternating Projection Methods , 2011 .