Characterizing complex networks with Forman-Ricci curvature and associated geometric flows

We introduce Forman-Ricci curvature and its corresponding flow as characteristics for complex networks attempting to extend the common approach of node-based network analysis by edge-based characteristics. Following a theoretical introduction and mathematical motivation, we apply the proposed network-analytic methods to static and dynamic complex networks and compare the results with established node-based characteristics. Our work suggests a number of applications for data mining, including denoising and clustering of experimental data, as well as extrapolation of network evolution.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  B. Eckmann Harmonische Funktionen und Randwertaufgaben in einem Komplex , 1944 .

[3]  D. A. Stone A combinatorial analogue of a theorem of Myers , 1976 .

[4]  W. Zachary,et al.  An Information Flow Model for Conflict and Fission in Small Groups , 1977, Journal of Anthropological Research.

[5]  B. Bollobás The evolution of random graphs , 1984 .

[6]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[7]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[8]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[9]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[10]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[11]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[12]  S. Strogatz Exploring complex networks , 2001, Nature.

[13]  B. Chow,et al.  COMBINATORIAL RICCI FLOWS ON SURFACES , 2002, math/0211256.

[14]  Alison L Gibbs,et al.  On Choosing and Bounding Probability Metrics , 2002, math/0209021.

[15]  Ian T. Foster,et al.  Mapping the Gnutella Network , 2002, IEEE Internet Comput..

[16]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.

[17]  Ian T. Foster,et al.  Mapping the Gnutella Network: Properties of Large-Scale Peer-to-Peer Systems and Implications for System Design , 2002, ArXiv.

[18]  Preface A Panoramic View of Riemannian Geometry , 2003 .

[19]  Robin Forman,et al.  Bochner's Method for Cell Complexes and Combinatorial Ricci Curvature , 2003, Discret. Comput. Geom..

[20]  G. Perelman Ricci flow with surgery on three-manifolds , 2003, math/0303109.

[21]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[22]  B. Chow,et al.  The Ricci Flow : An Introduction I , 2013 .

[23]  Masanori Arita The metabolic world of Escherichia coli is not small. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Guoliang Xu Discrete Laplace-Beltrami operators and their convergence , 2004, Comput. Aided Geom. Des..

[25]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[26]  坂上 貴之 書評 Computational Homology , 2005 .

[27]  Emil Saucan,et al.  Curvature Based Clustering for DNA Microarray Data Analysis , 2005, IbPRIA.

[28]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[30]  P. Topping Lectures on the Ricci Flow , 2006 .

[31]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[32]  Y. Ollivier Ricci curvature of Markov chains on metric spaces , 2007, math/0701886.

[33]  T. Vicsek,et al.  Directed network modules , 2007, physics/0703248.

[34]  Christos Faloutsos,et al.  Graph evolution: Densification and shrinking diameters , 2006, TKDD.

[35]  Anirban Banerjee,et al.  Spectral plot properties: Towards a qualitative classification of networks , 2008, Networks Heterog. Media.

[36]  X. Gu,et al.  Discrete Curvature Flow for Hyperbolic 3-Manifolds with Complete Geodesic Boundaries , 2008 .

[37]  Y. Ollivier A survey of Ricci curvature for metric spaces and Markov chains , 2010 .

[38]  J. Jost,et al.  Ollivier-Ricci curvature and the spectrum of the normalized graph Laplace operator , 2011, 1105.3803.

[39]  J. Jost,et al.  Spectra of combinatorial Laplace operators on simplicial complexes , 2011, 1105.2712.

[40]  J. Jost,et al.  Geometric analysis aspects of infinite semiplanar graphs with nonnegative curvature II , 2011, 1112.6282.

[41]  Iraj Saniee,et al.  Large-scale curvature of networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Jure Leskovec,et al.  Learning to Discover Social Circles in Ego Networks , 2012, NIPS.

[43]  Yehoshua Y. Zeevi,et al.  Ricci curvature and flow for image denoising and super-resolution , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[44]  Pramodita Sharma 2012 , 2013, Les 25 ans de l’OMC: Une rétrospective en photos.

[45]  Jérôme Kunegis,et al.  KONECT: the Koblenz network collection , 2013, WWW.

[46]  In suk Lee,et al.  Modes of interaction between individuals dominate the topologies of real world networks , 2014 .

[47]  Jure Leskovec,et al.  {SNAP Datasets}: {Stanford} Large Network Dataset Collection , 2014 .

[48]  Pascal Romon,et al.  Ricci Curvature on Polyhedral Surfaces via Optimal Transportation , 2014, Axioms.

[49]  Shiping Liu,et al.  Optimal Transport in Worldwide Metro Networks , 2014, 1403.7844.

[50]  Y. Zeevi,et al.  Ricci flow for image processing , 2014, 2014 IEEE 28th Convention of Electrical & Electronics Engineers in Israel (IEEEI).

[51]  Shiping Liu,et al.  Ollivier’s Ricci Curvature, Local Clustering and Curvature-Dimension Inequalities on Graphs , 2011, Discret. Comput. Geom..

[52]  Jure Leskovec,et al.  Discovering social circles in ego networks , 2012, ACM Trans. Knowl. Discov. Data.

[53]  Ed Reznik,et al.  Graph Curvature for Differentiating Cancer Networks , 2015, Scientific Reports.

[54]  Insuk Lee,et al.  Modes of Interaction between Individuals Dominate the Topologies of Real World Networks , 2014, bioRxiv.

[55]  T. Georgiou,et al.  Market Fragility, Systemic Risk, and Ricci Curvature , 2015, 1505.05182.

[56]  Jie Gao,et al.  Ricci curvature of the Internet topology , 2015, 2015 IEEE Conference on Computer Communications (INFOCOM).

[57]  Edwin R. Hancock,et al.  Depth-based hypergraph complexity traces from directed line graphs , 2016, Pattern Recognit..

[58]  Emil Saucan,et al.  Forman-Ricci Flow for Change Detection in Large Dynamic Data Sets , 2016, Axioms.

[59]  J. Jost,et al.  Forman curvature for complex networks , 2016, 1603.00386.

[60]  P. Stadler,et al.  Spectral classes of regular, random, and empirical graphs , 2014, 1406.6454.

[61]  J. Jost,et al.  Forman curvature for directed networks , 2016, 1605.04662.

[62]  Sara Ballouz,et al.  EGAD: Ultra-fast functional analysis of gene networks , 2016, bioRxiv.

[63]  Konstantin Avrachenkov,et al.  Cooperative Game Theory Approaches for Network Partitioning , 2017, COCOON.