Perturbation of solitons with non-Kerr law nonlinearity

Abstract This paper studies solitons and its perturbations with non-Kerr law nonlinearity that is governed by the generalized nonlinear Schrodinger's equation. The parameter dynamics of the soliton is obtained using the soliton perturbation theory. A couple of special cases of the non-Kerr law nonlinearity are considered as examples with the nonlinear damping type perturbation.

[1]  Cai,et al.  Pattern structures on generalized nonlinear Schrödinger equations with various nonlinear terms. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  Nail Akhmediev,et al.  Spatial solitons in Kerr and Kerr-like media , 1998 .

[3]  Pratima Sen,et al.  SUPPRESSION OF SOLITON INSTABILITY BY HIGHER ORDER NONLINEARITY IN LONG HAUL OPTICAL COMMUNICATION SYSTEMS , 1999 .

[4]  A Ankiewicz,et al.  Hamiltonian-versus-energy diagrams in soliton theory. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[6]  Adrian Ankiewicz,et al.  Solitons : nonlinear pulses and beams , 1997 .

[7]  P L Chu,et al.  Breathing spatial solitons in non-Kerr media. , 1997, Optics letters.

[8]  Boris A. Malomed,et al.  Three-dimensional spinning solitons in dispersive media with the cubic-quintic nonlinearity , 2000 .

[9]  Catherine Sulem,et al.  The nonlinear Schrödinger equation , 2012 .

[10]  Y. Kivshar,et al.  Bright and dark spatial solitons in non-Kerr media , 1998 .

[11]  Athanassios S. Fokas,et al.  Important developments in soliton theory , 1993 .

[12]  Jianke Yang,et al.  Stability and Evolution of Solitary Waves in Perturbed Generalized Nonlinear Schrödinger Equations , 2000, SIAM J. Appl. Math..

[13]  Pelinovsky,et al.  Nonlinear theory of oscillating, decaying, and collapsing solitons in the generalized nonlinear Schrödinger equation. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Anjan Biswas,et al.  Perturbation of solitons due to power law nonlinearity , 2001 .