Maximum a posteriori estimation of image boundaries by dynamic programming

Summary. We seek a computationally fast method for solving a difficult image segmentation problem: the positioning of boundaries on medical scanner images to delineate tissues of interest. We formulate a Bayesian model for image boundaries such that the maximum a posteriori estimator is obtainable very efficiently by dynamic programming. The prior model for the boundary is a biased random walk and the likelihood is based on a border appearance model, with parameter values obtained from training images. The method is applied successfully to the segmentation of ultrasound images and X-ray computed tomographs of sheep, for application in sheep breeding programmes.

[1]  Chris A. Glasbey,et al.  Towards automatic interpretation of sheep ultrasound scans , 1996 .

[2]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[3]  Michael I. Miller,et al.  REPRESENTATIONS OF KNOWLEDGE IN COMPLEX SYSTEMS , 1994 .

[4]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[6]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .

[7]  Graham W. Horgan,et al.  Image analysis for the biological sciences , 1997 .

[8]  Michael Buckley,et al.  Regularised shortest-path extraction , 1997, Pattern Recognit. Lett..

[9]  Milan Sonka,et al.  Object localization and border detection criteria design in edge-based image segmentation: automated learning from examples , 2000, IEEE Transactions on Medical Imaging.

[10]  A. Frigessi,et al.  Fast Approximate Maximum a Posteriori Restoration of Multicolour Images , 1995 .

[11]  Adrian F. M. Smith,et al.  Bayesian Faces via Hierarchical Template Modeling , 1994 .

[12]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[13]  Chris A. Glasbey Ultrasound Image Segmentation using Stochastic Templates , 1998 .

[14]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[15]  William A. Barrett,et al.  Interactive Segmentation with Intelligent Scissors , 1998, Graph. Model. Image Process..

[16]  Håvard Rue,et al.  A Loss Function Model for the Restoration of Grey Level Images , 1997 .

[17]  Ramesh C. Jain,et al.  Using Dynamic Programming for Solving Variational Problems in Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.