Detectability of high-redshift superluminous supernovae with upcoming optical and near-infrared surveys – II. Beyond z = 6
暂无分享,去创建一个
[1] S. E. Woosley,et al. The Nucleosynthetic Signature of Population III , 2002 .
[2] Piero Madau,et al. The Detectability of Pair-Production Supernovae at z 6 , 2005 .
[3] A. Gal-yam,et al. A massive hypergiant star as the progenitor of the supernova SN 2005gl , 2009, Nature.
[4] Simulations of Early Structure Formation: Primordial Gas Clouds , 2003, astro-ph/0301645.
[5] R. Nichol,et al. Euclid Definition Study Report , 2011, 1110.3193.
[6] B. Robertson,et al. CONNECTING THE GAMMA RAY BURST RATE AND THE COSMIC STAR FORMATION HISTORY: IMPLICATIONS FOR REIONIZATION AND GALAXY EVOLUTION , 2011, 1109.0990.
[7] Robert M. Quimby,et al. SN 2005ap: A Most Brilliant Explosion , 2007, 0709.0302.
[8] S. Djorgovski,et al. DISCOVERY OF THE EXTREMELY ENERGETIC SUPERNOVA 2008fz , 2009, 0908.1990.
[9] A. Gal-yam. Luminous Supernovae , 2012, Science.
[10] M. Franx,et al. ULTRAVIOLET LUMINOSITY FUNCTIONS FROM 132 z ∼ 7 AND z ∼ 8 LYMAN-BREAK GALAXIES IN THE ULTRA-DEEP HUDF09 AND WIDE-AREA EARLY RELEASE SCIENCE WFC3/IR OBSERVATIONS , 2010, 1006.4360.
[11] Chris L. Fryer,et al. FINDING THE FIRST COSMIC EXPLOSIONS. II. CORE-COLLAPSE SUPERNOVAE , 2012, 1209.5459.
[12] Adam A. Miller,et al. THE EXCEPTIONALLY LUMINOUS TYPE II-LINEAR SUPERNOVA 2008es , 2008, 0808.2193.
[13] Ryan Chornock,et al. SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae , 2006, astro-ph/0612617.
[14] M. Sullivan,et al. Supernova 2007bi as a pair-instability explosion , 2009, Nature.
[15] A. Frebel,et al. The minimum stellar metallicity observable in the Galaxy , 2008, 0811.0020.
[16] A. Pastorello,et al. SN 2006gy: WAS IT REALLY EXTRAORDINARY? , 2008, 0810.0635.
[17] Tom Abel,et al. The Formation and Fragmentation of Primordial Molecular Clouds , 1999 .
[18] Michele Cirasuolo,et al. THE ABUNDANCE OF STAR-FORMING GALAXIES IN THE REDSHIFT RANGE 8.5–12: NEW RESULTS FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1211.6804.
[19] E. Ishida,et al. Detectability of the First Cosmic Explosions , 2013, 1306.4984.
[20] R. Klessen,et al. The Formation and Fragmentation of Disks Around Primordial Protostars , 2011, Science.
[21] Jeff Cooke,et al. Superluminous supernovae at redshifts of 2.05 and 3.90 , 2012, Nature.
[22] E. O. Ofek,et al. Hydrogen-poor superluminous stellar explosions , 2009, Nature.
[23] M. Oguri,et al. PROBABILITY DISTRIBUTION FUNCTIONS OF COSMOLOGICAL LENSING: CONVERGENCE, SHEAR, AND MAGNIFICATION , 2011, 1106.3823.
[24] R. Bouwens,et al. CLASH: THREE STRONGLY LENSED IMAGES OF A CANDIDATE z ≈ 11 GALAXY , 2012, 1211.3663.
[25] E. E. O. Ishida,et al. Probing cosmic star formation up to z = 9.4 with GRBs , 2011, 1106.1745.
[26] C. Baltay,et al. Wide-Field InfraRed Survey Telescope WFIRST Final Report , 2012 .
[27] N. Tominaga,et al. DIVERSITY OF LUMINOUS SUPERNOVAE FROM NON-STEADY MASS LOSS , 2011, 1110.3807.
[28] Mamoru Doi,et al. WISH for deep and wide NIR surveys , 2012, Other Conferences.
[29] Andrew M. Hopkins,et al. On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.
[30] D. Kasen,et al. PAIR INSTABILITY SUPERNOVAE: LIGHT CURVES, SPECTRA, AND SHOCK BREAKOUT , 2011, 1101.3336.
[31] P. Scott,et al. Detection of isolated population III stars with the James Webb Space Telescope , 2012, 1206.0007.
[32] S. B. Cenko,et al. DISCOVERY OF THE ULTRA-BRIGHT TYPE II-L SUPERNOVA 2008es , 2008, 0808.2812.
[33] Donald W. Sweeney,et al. LSST Science Book, Version 2.0 , 2009, 0912.0201.
[34] Lars Bildsten,et al. SUPERNOVA LIGHT CURVES POWERED BY YOUNG MAGNETARS , 2009, 0911.0680.
[35] N. Yoshida,et al. The formation of the first stars and galaxies , 2009, Nature.
[36] Benjamin D. Johnson,et al. The Redshift Distribution of Distant Supernovae and Its Use in Probing Reionization , 2005, astro-ph/0505110.
[37] N. Yoshida,et al. The First Galaxies , 2008, Proceedings of the International Astronomical Union.
[38] Hideyuki Umeda,et al. How Much 56Ni Can Be Produced in Core-Collapse Supernovae? Evolution and Explosions of 30-100 M☉ Stars , 2007, 0707.2598.
[39] Bromm,et al. Forming the First Stars in the Universe: The Fragmentation of Primordial Gas. , 1999, The Astrophysical journal.
[40] D. Fox,et al. On the Progenitor of SN 2005gl and the Nature of Type IIn Supernovae , 2006, astro-ph/0608029.
[41] Chris L. Fryer,et al. ILLUMINATING THE PRIMEVAL UNIVERSE WITH TYPE IIn SUPERNOVAE , 2013, 1302.0436.
[42] P. Marshall,et al. Late-Time Observations of SN 2006gy: Still Going Strong , 2008, 0802.1743.
[43] Eduardo Serrano,et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.
[44] D. Kasen,et al. Pair‐instability supernovae at the epoch of reionization , 2011, 1112.2710.
[45] S. Khochfar,et al. The First Billion Years project: the impact of stellar radiation on the co-evolution of Populations II and III , 2012, 1206.5824.
[46] Volker Bromm,et al. Generic Spectrum and Ionization Efficiency of a Heavy Initial Mass Function for the First Stars , 2001 .
[47] J. Neill,et al. THE EXTREME HOSTS OF EXTREME SUPERNOVAE , 2010, 1011.3512.
[48] THE NUMBER OF SUPERNOVAE FROM PRIMORDIAL STARS IN THE UNIVERSE , 2002, astro-ph/0411558.
[49] Matthew J. Turk,et al. The Formation of Population III Binaries from Cosmological Initial Conditions , 2009, Science.
[50] M. Rees,et al. High-Redshift Supernovae and the Metal-Poor Halo Stars: Signatures of the First Generation of Galaxies , 1997, astro-ph/9701093.
[51] K. Nomoto,et al. A CORE-COLLAPSE SUPERNOVA MODEL FOR THE EXTREMELY LUMINOUS TYPE Ic SUPERNOVA 2007bi: AN ALTERNATIVE TO THE PAIR-INSTABILITY SUPERNOVA MODEL , 2010, 1004.2967.
[52] Constraints on a Universal IMF from UV to Near-IR Galaxy Luminosity Densities , 2003, astro-ph/0304423.
[53] Massimo Stiavelli,et al. SEEING THE FIRST SUPERNOVAE AT THE EDGE OF THE UNIVERSE WITH JWST , 2012, 1209.3457.
[54] E. Chatzopoulos,et al. EFFECTS OF ROTATION ON THE MINIMUM MASS OF PRIMORDIAL PROGENITORS OF PAIR-INSTABILITY SUPERNOVAE , 2012, 1201.1328.
[55] N. Yoshida,et al. Light-curve modelling of superluminous supernova 2006gy: collision between supernova ejecta and a dense circumstellar medium , 2012, 1204.6109.
[56] B. O’Shea,et al. Population III Star Formation in a ΛCDM Universe. I. The Effect of Formation Redshift and Environment on Protostellar Accretion Rate , 2006, astro-ph/0607013.
[57] T. Lauer,et al. A magnified young galaxy from about 500 million years after the Big Bang , 2012, Nature.
[58] P. Nugent,et al. K‐Corrections and Extinction Corrections for Type Ia Supernovae , 2002, astro-ph/0205351.
[59] Ivan K. Baldry,et al. The K correction , 2002 .
[60] N. Christlieb,et al. A search for metal-poor stars pre-enriched by pair-instability supernovae I. A pilot study for target selection from Sloan Digital Sky Survey , 2012, 1207.4536.
[61] H. Rix,et al. The James Webb Space Telescope , 2006, astro-ph/0606175.
[62] W. M. Wood-Vasey,et al. Pan-STARRS1 DISCOVERY OF TWO ULTRALUMINOUS SUPERNOVAE AT z ≈ 0.9 , 2011, 1107.3552.
[63] D. Kasen,et al. Pair-instability supernovae via collision runaway in young dense star clusters , 2011, 1111.3648.
[64] K. Glazebrook,et al. Constraints on a Universal Stellar Initial Mass Function from Ultraviolet to Near-Infrared Galaxy Luminosity Densities , 2003 .
[65] N. Yoshida,et al. Protostellar Feedback Halts the Growth of the First Stars in the Universe , 2011, Science.
[66] R. Klessen,et al. THE DELAY OF POPULATION III STAR FORMATION BY SUPERSONIC STREAMING VELOCITIES , 2011, 1101.5493.
[67] Ucsb,et al. Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys , 2010, 1001.2037.
[68] J. Wheeler,et al. Rates of superluminous supernovae at z ∼ 0.2 , 2013, 1302.0911.
[69] Naoki Yoshida,et al. Detectability of high‐redshift superluminous supernovae with upcoming optical and near‐infrared surveys , 2012, 1202.3610.
[70] N. Yoshida,et al. Formation of Massive Primordial Stars in a Reionized Gas , 2007, 0706.3597.
[71] S. Blondin,et al. Radiative properties of pair-instability supernova explosions , 2012, 1210.6163.
[72] K. Nomoto,et al. EXTREMELY LUMINOUS SUPERNOVA 2006gy AT LATE PHASE: DETECTION OF OPTICAL EMISSION FROM SUPERNOVA , 2009, 0902.1440.
[73] Chris L. Fryer,et al. FINDING THE FIRST COSMIC EXPLOSIONS. I. PAIR-INSTABILITY SUPERNOVAE , 2012, 1211.4979.
[74] THE SOURCE DENSITY AND OBSERVABILITY OF PAIR-INSTABILITY SUPERNOVAE FROM THE FIRST STARS , 2011, 1112.5207.
[75] S. Lilly,et al. The Number and Observability of Population III Supernovae at High Redshifts , 2004, astro-ph/0412248.
[76] O. Lahav,et al. A CENSUS OF STAR-FORMING GALAXIES IN THE Z ∼ 9–10 UNIVERSE BASED ON HST+SPITZER OBSERVATIONS OVER 19 CLASH CLUSTERS: THREE CANDIDATE Z ∼ 9–10 GALAXIES AND IMPROVED CONSTRAINTS ON THE STAR FORMATION RATE DENSITY AT Z ∼ 9.2 , 2012, 1211.2230.
[77] T. Greif,et al. The first stars: formation of binaries and small multiple systems , 2009, 0908.0712.
[78] J. Cooke. Detecting z > 2 Type IIn Supernovae , 2007, 0711.1550.