Detectability of high-redshift superluminous supernovae with upcoming optical and near-infrared surveys – II. Beyond z = 6

Observational identification of the first stars is one of the great challenges in the modern astronomy. Although a single first star is too faint to be detected, supernova explosions of the first stars can be bright enough. An important question is whether such supernovae can be detected in the limited observational area with realistic observational resources. We perform detailed simulations to study the detectability of superluminous supernovae (SLSNe) at high redshifts, using the observationally-calibrated star formation rate density and supernova occurrence rate. We show that a 100 deg 2 survey with the limiting magnitude of 26 mag in near-infrared wavelengths will be able to discover about 10 SLSNe at z > 10. If the survey is extended to 200 deg 2 with 27 mag depth, about 10 SLSNe can be discovered at z > 15. We emphasize that the observations at � 3 �m are crucial to detect and select SLSNe at z > 10. Our simulations are also applied to the planned survey with Euclid, WFIRST, and WISH. These surveys will be able to detect about 1000, 400, and 3000 SLSNe up to z � 5, 7, and 12, respectively. We conclude that detection of SLSNe at z > 10 is in fact achievable in the near future.

[1]  S. E. Woosley,et al.  The Nucleosynthetic Signature of Population III , 2002 .

[2]  Piero Madau,et al.  The Detectability of Pair-Production Supernovae at z 6 , 2005 .

[3]  A. Gal-yam,et al.  A massive hypergiant star as the progenitor of the supernova SN 2005gl , 2009, Nature.

[4]  Simulations of Early Structure Formation: Primordial Gas Clouds , 2003, astro-ph/0301645.

[5]  R. Nichol,et al.  Euclid Definition Study Report , 2011, 1110.3193.

[6]  B. Robertson,et al.  CONNECTING THE GAMMA RAY BURST RATE AND THE COSMIC STAR FORMATION HISTORY: IMPLICATIONS FOR REIONIZATION AND GALAXY EVOLUTION , 2011, 1109.0990.

[7]  Robert M. Quimby,et al.  SN 2005ap: A Most Brilliant Explosion , 2007, 0709.0302.

[8]  S. Djorgovski,et al.  DISCOVERY OF THE EXTREMELY ENERGETIC SUPERNOVA 2008fz , 2009, 0908.1990.

[9]  A. Gal-yam Luminous Supernovae , 2012, Science.

[10]  M. Franx,et al.  ULTRAVIOLET LUMINOSITY FUNCTIONS FROM 132 z ∼ 7 AND z ∼ 8 LYMAN-BREAK GALAXIES IN THE ULTRA-DEEP HUDF09 AND WIDE-AREA EARLY RELEASE SCIENCE WFC3/IR OBSERVATIONS , 2010, 1006.4360.

[11]  Chris L. Fryer,et al.  FINDING THE FIRST COSMIC EXPLOSIONS. II. CORE-COLLAPSE SUPERNOVAE , 2012, 1209.5459.

[12]  Adam A. Miller,et al.  THE EXCEPTIONALLY LUMINOUS TYPE II-LINEAR SUPERNOVA 2008es , 2008, 0808.2193.

[13]  Ryan Chornock,et al.  SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae , 2006, astro-ph/0612617.

[14]  M. Sullivan,et al.  Supernova 2007bi as a pair-instability explosion , 2009, Nature.

[15]  A. Frebel,et al.  The minimum stellar metallicity observable in the Galaxy , 2008, 0811.0020.

[16]  A. Pastorello,et al.  SN 2006gy: WAS IT REALLY EXTRAORDINARY? , 2008, 0810.0635.

[17]  Tom Abel,et al.  The Formation and Fragmentation of Primordial Molecular Clouds , 1999 .

[18]  Michele Cirasuolo,et al.  THE ABUNDANCE OF STAR-FORMING GALAXIES IN THE REDSHIFT RANGE 8.5–12: NEW RESULTS FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1211.6804.

[19]  E. Ishida,et al.  Detectability of the First Cosmic Explosions , 2013, 1306.4984.

[20]  R. Klessen,et al.  The Formation and Fragmentation of Disks Around Primordial Protostars , 2011, Science.

[21]  Jeff Cooke,et al.  Superluminous supernovae at redshifts of 2.05 and 3.90 , 2012, Nature.

[22]  E. O. Ofek,et al.  Hydrogen-poor superluminous stellar explosions , 2009, Nature.

[23]  M. Oguri,et al.  PROBABILITY DISTRIBUTION FUNCTIONS OF COSMOLOGICAL LENSING: CONVERGENCE, SHEAR, AND MAGNIFICATION , 2011, 1106.3823.

[24]  R. Bouwens,et al.  CLASH: THREE STRONGLY LENSED IMAGES OF A CANDIDATE z ≈ 11 GALAXY , 2012, 1211.3663.

[25]  E. E. O. Ishida,et al.  Probing cosmic star formation up to z = 9.4 with GRBs , 2011, 1106.1745.

[26]  C. Baltay,et al.  Wide-Field InfraRed Survey Telescope WFIRST Final Report , 2012 .

[27]  N. Tominaga,et al.  DIVERSITY OF LUMINOUS SUPERNOVAE FROM NON-STEADY MASS LOSS , 2011, 1110.3807.

[28]  Mamoru Doi,et al.  WISH for deep and wide NIR surveys , 2012, Other Conferences.

[29]  Andrew M. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[30]  D. Kasen,et al.  PAIR INSTABILITY SUPERNOVAE: LIGHT CURVES, SPECTRA, AND SHOCK BREAKOUT , 2011, 1101.3336.

[31]  P. Scott,et al.  Detection of isolated population III stars with the James Webb Space Telescope , 2012, 1206.0007.

[32]  S. B. Cenko,et al.  DISCOVERY OF THE ULTRA-BRIGHT TYPE II-L SUPERNOVA 2008es , 2008, 0808.2812.

[33]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[34]  Lars Bildsten,et al.  SUPERNOVA LIGHT CURVES POWERED BY YOUNG MAGNETARS , 2009, 0911.0680.

[35]  N. Yoshida,et al.  The formation of the first stars and galaxies , 2009, Nature.

[36]  Benjamin D. Johnson,et al.  The Redshift Distribution of Distant Supernovae and Its Use in Probing Reionization , 2005, astro-ph/0505110.

[37]  N. Yoshida,et al.  The First Galaxies , 2008, Proceedings of the International Astronomical Union.

[38]  Hideyuki Umeda,et al.  How Much 56Ni Can Be Produced in Core-Collapse Supernovae? Evolution and Explosions of 30-100 M☉ Stars , 2007, 0707.2598.

[39]  Bromm,et al.  Forming the First Stars in the Universe: The Fragmentation of Primordial Gas. , 1999, The Astrophysical journal.

[40]  D. Fox,et al.  On the Progenitor of SN 2005gl and the Nature of Type IIn Supernovae , 2006, astro-ph/0608029.

[41]  Chris L. Fryer,et al.  ILLUMINATING THE PRIMEVAL UNIVERSE WITH TYPE IIn SUPERNOVAE , 2013, 1302.0436.

[42]  P. Marshall,et al.  Late-Time Observations of SN 2006gy: Still Going Strong , 2008, 0802.1743.

[43]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[44]  D. Kasen,et al.  Pair‐instability supernovae at the epoch of reionization , 2011, 1112.2710.

[45]  S. Khochfar,et al.  The First Billion Years project: the impact of stellar radiation on the co-evolution of Populations II and III , 2012, 1206.5824.

[46]  Volker Bromm,et al.  Generic Spectrum and Ionization Efficiency of a Heavy Initial Mass Function for the First Stars , 2001 .

[47]  J. Neill,et al.  THE EXTREME HOSTS OF EXTREME SUPERNOVAE , 2010, 1011.3512.

[48]  THE NUMBER OF SUPERNOVAE FROM PRIMORDIAL STARS IN THE UNIVERSE , 2002, astro-ph/0411558.

[49]  Matthew J. Turk,et al.  The Formation of Population III Binaries from Cosmological Initial Conditions , 2009, Science.

[50]  M. Rees,et al.  High-Redshift Supernovae and the Metal-Poor Halo Stars: Signatures of the First Generation of Galaxies , 1997, astro-ph/9701093.

[51]  K. Nomoto,et al.  A CORE-COLLAPSE SUPERNOVA MODEL FOR THE EXTREMELY LUMINOUS TYPE Ic SUPERNOVA 2007bi: AN ALTERNATIVE TO THE PAIR-INSTABILITY SUPERNOVA MODEL , 2010, 1004.2967.

[52]  Constraints on a Universal IMF from UV to Near-IR Galaxy Luminosity Densities , 2003, astro-ph/0304423.

[53]  Massimo Stiavelli,et al.  SEEING THE FIRST SUPERNOVAE AT THE EDGE OF THE UNIVERSE WITH JWST , 2012, 1209.3457.

[54]  E. Chatzopoulos,et al.  EFFECTS OF ROTATION ON THE MINIMUM MASS OF PRIMORDIAL PROGENITORS OF PAIR-INSTABILITY SUPERNOVAE , 2012, 1201.1328.

[55]  N. Yoshida,et al.  Light-curve modelling of superluminous supernova 2006gy: collision between supernova ejecta and a dense circumstellar medium , 2012, 1204.6109.

[56]  B. O’Shea,et al.  Population III Star Formation in a ΛCDM Universe. I. The Effect of Formation Redshift and Environment on Protostellar Accretion Rate , 2006, astro-ph/0607013.

[57]  T. Lauer,et al.  A magnified young galaxy from about 500 million years after the Big Bang , 2012, Nature.

[58]  P. Nugent,et al.  K‐Corrections and Extinction Corrections for Type Ia Supernovae , 2002, astro-ph/0205351.

[59]  Ivan K. Baldry,et al.  The K correction , 2002 .

[60]  N. Christlieb,et al.  A search for metal-poor stars pre-enriched by pair-instability supernovae I. A pilot study for target selection from Sloan Digital Sky Survey , 2012, 1207.4536.

[61]  H. Rix,et al.  The James Webb Space Telescope , 2006, astro-ph/0606175.

[62]  W. M. Wood-Vasey,et al.  Pan-STARRS1 DISCOVERY OF TWO ULTRALUMINOUS SUPERNOVAE AT z ≈ 0.9 , 2011, 1107.3552.

[63]  D. Kasen,et al.  Pair-instability supernovae via collision runaway in young dense star clusters , 2011, 1111.3648.

[64]  K. Glazebrook,et al.  Constraints on a Universal Stellar Initial Mass Function from Ultraviolet to Near-Infrared Galaxy Luminosity Densities , 2003 .

[65]  N. Yoshida,et al.  Protostellar Feedback Halts the Growth of the First Stars in the Universe , 2011, Science.

[66]  R. Klessen,et al.  THE DELAY OF POPULATION III STAR FORMATION BY SUPERSONIC STREAMING VELOCITIES , 2011, 1101.5493.

[67]  Ucsb,et al.  Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys , 2010, 1001.2037.

[68]  J. Wheeler,et al.  Rates of superluminous supernovae at z ∼ 0.2 , 2013, 1302.0911.

[69]  Naoki Yoshida,et al.  Detectability of high‐redshift superluminous supernovae with upcoming optical and near‐infrared surveys , 2012, 1202.3610.

[70]  N. Yoshida,et al.  Formation of Massive Primordial Stars in a Reionized Gas , 2007, 0706.3597.

[71]  S. Blondin,et al.  Radiative properties of pair-instability supernova explosions , 2012, 1210.6163.

[72]  K. Nomoto,et al.  EXTREMELY LUMINOUS SUPERNOVA 2006gy AT LATE PHASE: DETECTION OF OPTICAL EMISSION FROM SUPERNOVA , 2009, 0902.1440.

[73]  Chris L. Fryer,et al.  FINDING THE FIRST COSMIC EXPLOSIONS. I. PAIR-INSTABILITY SUPERNOVAE , 2012, 1211.4979.

[74]  THE SOURCE DENSITY AND OBSERVABILITY OF PAIR-INSTABILITY SUPERNOVAE FROM THE FIRST STARS , 2011, 1112.5207.

[75]  S. Lilly,et al.  The Number and Observability of Population III Supernovae at High Redshifts , 2004, astro-ph/0412248.

[76]  O. Lahav,et al.  A CENSUS OF STAR-FORMING GALAXIES IN THE Z ∼ 9–10 UNIVERSE BASED ON HST+SPITZER OBSERVATIONS OVER 19 CLASH CLUSTERS: THREE CANDIDATE Z ∼ 9–10 GALAXIES AND IMPROVED CONSTRAINTS ON THE STAR FORMATION RATE DENSITY AT Z ∼ 9.2 , 2012, 1211.2230.

[77]  T. Greif,et al.  The first stars: formation of binaries and small multiple systems , 2009, 0908.0712.

[78]  J. Cooke Detecting z > 2 Type IIn Supernovae , 2007, 0711.1550.