The mass-loss return from evolved stars to the Large Magellanic Cloud - V. The GRAMS carbon-star model grid

The total dust return rate from AGB and RSG star outflows is an important constraint to galactic chemical evolution models. However, this requires detailed radiative transfer (RT) modeling of individual stars, which becomes impractical for large data sets. Another approach is to select the best-fit spectral energy distribution (SED) from a grid of dust shell models, allowing for a faster determination of the luminosities and mass-loss rates for entire samples. We have developed the Grid of RSG and AGB ModelS (GRAMS) to measure the mass-loss return from evolved stars. The models span the range of stellar, dust shell and grain properties relevant to evolved stars. In this paper we present the carbon-star grid and compare our results with data of Large Magellanic Cloud (LMC) carbon stars from the SAGE and SAGE-Spec programs. We generate spherically symmetric dust shell models using the 2Dust code, with hydrostatic models for the central stars. We explore five values of the inner radius R_in of the dust shell (1.5, 3, 4.5, 7 and 12 R_star). We use amorphous carbon dust mixed with 10% silicon carbide by mass. The grain sizes follows a KMH distribution. The models span 26 values of 11.3 um optical depth, ranging from 0.001 to 4. For each model, 2Dust calculates the output SED from 0.2 to 200 um. Over 12,000 models have dust temperatures below 1800 K. The GRAMS synthetic photometry is in good agreement with SAGE photometry for LMC carbon-rich and extreme AGB star candidates, as well as spectroscopically confirmed carbon stars from the SAGE-Spec study. Our models reproduce the IRAC colors of most of the extreme AGB star candidates, consistent with the expectation that a majority of these enshrouded stars have carbon-rich dust. Finally, we fit the SEDs of some well-studied carbon stars and compare the resulting luminosities and mass-loss rates with those from previous studies.

[1]  S. Srinivasan,et al.  THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. IV. CONSTRUCTION AND VALIDATION OF A GRID OF MODELS FOR OXYGEN-RICH AGB STARS, RED SUPERGIANTS, AND EXTREME AGB STARS , 2014, 1407.8452.

[2]  R. Indebetouw,et al.  THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. II. DUST PROPERTIES FOR OXYGEN-RICH ASYMPTOTIC GIANT BRANCH STARS , 2010, 1009.2681.

[3]  Joana M. Oliveira,et al.  The SAGE-Spec Spitzer Legacy Program: The Life Cycle of Dust and Gas in the Large Magellanic Cloud , 2010, 1004.1142.

[4]  S. Hoefner,et al.  Dust driven mass loss from carbon stars as a function of stellar parameters - I. A grid of solar-metallicity wind models , 2009, 1209.4590.

[5]  L. Loinard,et al.  Tracers of stellar mass-loss. I. Optical and near-IR colours and surface brightness fluctuations , 2009, 0908.4133.

[6]  R. Davies,et al.  Astronomical Society of the Pacific Conference Series , 2010 .

[7]  M. Groenewegen,et al.  Luminosities and mass-loss rates of SMC and LMC AGB stars and red supergiants , 2009, 0908.3087.

[8]  L. Girardi,et al.  Synthetic photometry for carbon rich giants I. Hydrostatic dust-free models ⋆ , 2009, 0905.4415.

[9]  C. Leitherer,et al.  THE MASS LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD: EMPIRICAL RELATIONS FOR EXCESS EMISSION AT 8 AND 24 μm , 2009, 0903.1661.

[10]  M. Barlow,et al.  The global gas and dust budget of the Large Magellanic Cloud: AGB stars and supernovae, and the impact on the ISM evolution , 2009, 0903.1123.

[11]  S. Höfner Atmospheres and Winds of M‐ and C‐type AGB stars , 2009 .

[12]  C. Leitherer,et al.  VARIABLE EVOLVED STARS AND YOUNG STELLAR OBJECTS DISCOVERED IN THE LARGE MAGELLANIC CLOUD USING THE SAGE SURVEY , 2008, 0811.0408.

[13]  A. Speck,et al.  SILICON CARBIDE ABSORPTION FEATURES: DUST FORMATION IN THE OUTFLOWS OF EXTREME CARBON STARS , 2008, 0810.2599.

[14]  Tokyo,et al.  AKARI IRC Survey of the Large Magellanic Cloud: Outline of the Survey and Initial Results , 2008, 0808.3022.

[15]  Joana M. Oliveira,et al.  Molecules and dust production in the Magellanic Clouds , 2008, 0806.3557.

[16]  K. Eriksson,et al.  Intense mass loss from C-rich AGB stars at low metallicity? , 2008, 0804.2482.

[17]  Astronomy Department,et al.  Scaled solar tracks and isochrones in a large region of the Z-Y plane I. From the ZAMS to the TP-A , 2008, 0803.1460.

[18]  Belgium,et al.  Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP- , 2007, 0711.4922.

[19]  S. Oh,et al.  The infrared astronomical mission AKARI , 2007, 0708.1796.

[20]  L. Mattsson,et al.  Mass loss evolution and the formation of detached shells around TP-AGB stars , 2007, 0705.2232.

[21]  C. D. Laney,et al.  Cepheid parallaxes and the Hubble constant , 2007, 0705.1592.

[22]  -INAF,et al.  Evolution of asymptotic giant branch stars. I. Updated synthetic TP-AGB models and their basic calibration , 2007, astro-ph/0703139.

[23]  J. Leisenring,et al.  The Unusual Spitzer Spectrum of the Carbon Star IRAS 04496–6958: A Different Condensation Sequence in the LMC? , 2006 .

[24]  C. Leitherer,et al.  Spitzer SAGE Survey of the Large Magellanic Cloud. II. Evolved Stars and Infrared Color-Magnitude Diagrams , 2006, astro-ph/0608189.

[25]  P. Woitke 2D models for dust-driven AGB star winds , 2006, astro-ph/0602371.

[26]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[27]  Linda J. Smith,et al.  SPITZER SURVEY OF THE LARGE MAGELLANIC CLOUD, SURVEYING THE AGENTS OF A GALAXY'S EVOLUTION (SAGE). IV. DUST PROPERTIES IN THE INTERSTELLAR MEDIUM , 2005, Proceedings of the International Astronomical Union.

[28]  M. Groenewegen The mid- and far-infrared colours of AGB and post-AGB stars , 2005, astro-ph/0511475.

[29]  I. Yamamura,et al.  Very Large Telescope three micron spectra of dust-enshrouded red giants in the Large Magellanic Cloud , 2005, astro-ph/0510510.

[30]  I. Yamamura,et al.  Three-micron spectra of AGB stars and supergiants in nearby galaxies , 2005, astro-ph/0501247.

[31]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[32]  U. Jørgensen,et al.  Dynamic model atmospheres of AGB stars : IV. A comparison of synthetic carbon star spectra with observations , 2004 .

[33]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[34]  Wm. A. Wheaton,et al.  Spectral Irradiance Calibration in the Infrared. XIV. The Absolute Calibration of 2MASS , 2003, astro-ph/0304350.

[35]  M. Feast,et al.  Obscured asymptotic giant branch variables in the Large Magellanic Cloud and the period–luminosity relation , 2003, astro-ph/0302246.

[36]  U. Jørgensen,et al.  Dynamic model atmospheres of AGB stars - III. Effects of frequency-dependent radiative transfer , 2003 .

[37]  M. Meixner,et al.  2-DUST: A Dust Radiative Transfer Code for an Axisymmetric System , 2002, astro-ph/0212523.

[38]  J. Lattanzio,et al.  Parameterising the Third Dredge-up in Asymptotic Giant Branch Stars , 2002, Publications of the Astronomical Society of Australia.

[39]  Klaus-Peter Schröder,et al.  An Improved Mass-loss Description for Dust-driven Superwinds , 2002 .

[40]  A. Speck,et al.  Two Subclasses of Proto-Planetary Nebulae: Model Calculations , 2002, astro-ph/0202161.

[41]  H. Walker,et al.  Classification of 2.4-45.2 Micron Spectra from the Infrared Space Observatory Short Wavelength Spectrometer , 2002, astro-ph/0201507.

[42]  M. Kontizas,et al.  A Catalogue of carbon stars in the LMC , 2001 .

[43]  M. Weinberg,et al.  Structure of the Large Magellanic Cloud from 2MASS , 2000, astro-ph/0003204.

[44]  M. Meixner,et al.  A Hubble Space Telescope Snapshot Survey of Proto-Planetary Nebula Candidates: Two Types of Axisymmetric Reflection Nebulosities , 1999, astro-ph/9908238.

[45]  K. Suh Optical properties of the silicate dust grains in the envelopes around asymptotic giant branch stars , 1999 .

[46]  C. Maraston Evolutionary synthesis of stellar populations: a modular tool , 1998, astro-ph/9807338.

[47]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[48]  E. Dwek The Evolution of the Elemental Abundances in the Gas and Dust Phases of the Galaxy , 1997, astro-ph/9707024.

[49]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[50]  L. Colangeli,et al.  Optical constants of cosmic carbon analogue grains — I. Simulation of clustering by a modified continuous distribution of ellipsoids , 1996 .

[51]  Takashi Ichikawa,et al.  GALAXY COLORS IN VARIOUS PHOTOMETRIC BAND SYSTEMS , 1995 .

[52]  D. Hale,et al.  Inner radii of dust shells and stellar diameters obtained by an infrared stellar interferometer at 11 micron wavelength , 1995 .

[53]  E. Deul,et al.  DENIS: A deep near-infrared survey of the southern sky , 1994 .

[54]  P. Martin,et al.  The Size Distribution of Interstellar Dust Particles as Determined from Extinction , 1993 .

[55]  A. Walker The Large Magellanic Cloud clusters NGC 1835 - Photometry of the RR Lyrae stars , 1993 .

[56]  Peter G. Martin,et al.  Shape and clustering effects on the optical properties of amorphous carbon , 1991 .

[57]  J. Mould,et al.  The asymptotic giant branch of Magellanic cloud clusters , 1990 .

[58]  J. Harrington,et al.  Thermal Infrared Emission by Dust in the Planetary Nebula NGC 3918 , 1988 .

[59]  M. Jura Mass loss from carbon stars , 1986 .

[60]  I. Iben Carbon star formation and neutron-rich isotope formation in low-mass asymptotic giant branch stars , 1983 .

[61]  R. J. Talbot,et al.  The carbon abundance in the Magellanic Clouds from IUE observations of H II regions , 1982 .

[62]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[63]  N. Scoville,et al.  OH-IR stars. I. Physical properties of circumstellar envelopes , 1976 .