Bases and dimensions of bivariate hierarchical tensor-product splines

We prove that the dimension of bivariate tensor-product spline spaces of bi-degree (d,d) with maximum order of smoothness on a multi-cell domain (more precisely, on a set of cells from a tensor-product grid) is equal to the number of tensor-product B-spline basis functions, defined by only single knots in both directions, acting on the considered domain. A certain reasonable assumption on the configuration of the cells is required. This result is then generalized to the case of piecewise polynomial spaces, with the same smoothness properties mentioned above, defined on a multi-grid multi-cell domain (more precisely, on a set of cells from a hierarchy of tensor-product grids). Again, a certain reasonable assumption regarding the configuration of cells is needed. Finally, it is observed that this construction corresponds to the classical definition of hierarchical B-spline bases. This allows to conclude that this basis spans the full space of spline functions on multi-grid multi-cell domains under reasonable assumptions.

[1]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[2]  H. Nguyen-Xuan,et al.  Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .

[3]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[4]  B. Mourrain On the dimension of spline spaces on planar T-subdivisions , 2010 .

[5]  David R. Forsey,et al.  Surface fitting with hierarchical splines , 1995, TOGS.

[6]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[7]  M. Scott,et al.  On the Nesting Behavior of T-splines , 2011 .

[8]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[9]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[10]  G. Sangalli,et al.  Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .

[11]  Jiansong Deng,et al.  Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..

[12]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[13]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[14]  David R. Forsey,et al.  Multiresolution Surface Reconstruction for Hierarchical B-splines , 1998, Graphics Interface.

[15]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[16]  Günther Greiner,et al.  Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines , 2010 .

[17]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[18]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[19]  Jiansong Deng,et al.  Dimensions of spline spaces over T-meshes , 2006 .

[20]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[21]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[22]  Jiansong Deng,et al.  Polynomial splines over general T-meshes , 2010, The Visual Computer.

[23]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..