Bases and dimensions of bivariate hierarchical tensor-product splines
暂无分享,去创建一个
[1] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[2] H. Nguyen-Xuan,et al. Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .
[3] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[4] B. Mourrain. On the dimension of spline spaces on planar T-subdivisions , 2010 .
[5] David R. Forsey,et al. Surface fitting with hierarchical splines , 1995, TOGS.
[6] John A. Evans,et al. Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .
[7] M. Scott,et al. On the Nesting Behavior of T-splines , 2011 .
[8] John Hart,et al. ACM Transactions on Graphics , 2004, SIGGRAPH 2004.
[9] Thomas J. R. Hughes,et al. On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..
[10] G. Sangalli,et al. Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .
[11] Jiansong Deng,et al. Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..
[12] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[13] Nicholas S. North,et al. T-spline simplification and local refinement , 2004, SIGGRAPH 2004.
[14] David R. Forsey,et al. Multiresolution Surface Reconstruction for Hierarchical B-splines , 1998, Graphics Interface.
[15] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.
[16] Günther Greiner,et al. Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines , 2010 .
[17] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[18] T. Hughes,et al. Local refinement of analysis-suitable T-splines , 2012 .
[19] Jiansong Deng,et al. Dimensions of spline spaces over T-meshes , 2006 .
[20] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[21] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[22] Jiansong Deng,et al. Polynomial splines over general T-meshes , 2010, The Visual Computer.
[23] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..