A review of electrolyte additives and impurities in vanadium redox flow batteries

[1]  P. Fischer,et al.  The role of phosphate additive in stabilization of sulphuric-acid-based vanadium(V) electrolyte for all-vanadium redox-flow batteries , 2017 .

[2]  M. Skyllas-Kazacos,et al.  Modification Based on MoO3 as Electrocatalysts for High Power Density Vanadium Redox Flow Batteries , 2017 .

[3]  M. Skyllas-Kazacos,et al.  Evaluation of additive formulations to inhibit precipitation of positive electrolyte in vanadium battery , 2017 .

[4]  M. Skyllas-Kazacos,et al.  The Effect of Additives on the High‐Temperature Stability of the Vanadium Redox Flow Battery Positive Electrolytes , 2016 .

[5]  Maria Skyllas-Kazacos,et al.  Effect of Additives on the Low‐Temperature Stability of Vanadium Redox Flow Battery Negative Half‐Cell Electrolyte , 2015 .

[6]  Minjoon Park,et al.  Nanostructured Electrocatalysts for All-Vanadium Redox Flow Batteries. , 2015, Chemistry, an Asian journal.

[7]  S. Paddison,et al.  Effect of Sulfuric and Triflic Acids on the Hydration of Vanadium Cations: An ab Initio Study. , 2015, The journal of physical chemistry. A.

[8]  Jun Liu,et al.  Understanding Aqueous Electrolyte Stability through Combined Computational and Magnetic Resonance Spectroscopy: A Case Study on Vanadium Redox Flow Battery Electrolytes , 2015 .

[9]  M. Ulaganathan,et al.  Effect of Bromine Complexing Agents on the Performance of Cation Exchange Membranes in Second‐Generation Vanadium Bromide Battery , 2015 .

[10]  Suqin Liu,et al.  Nitrogen-Doped Graphene:Effects of nitrogen species on the properties of the vanadium redox flow battery , 2014 .

[11]  R. Menéndez,et al.  Graphite felt modified with bismuth nanoparticles as negative electrode in a vanadium redox flow battery. , 2014, ChemSusChem.

[12]  P. Fischer,et al.  1,3-Dioxolane, tetrahydrofuran, acetylacetone and dimethyl sulfoxide as solvents for non-aqueous vanadium acetylacetonate redox-flow-batteries , 2013 .

[13]  Wei Wang,et al.  Elucidating the higher stability of vanadium(V) cations in mixed acid based redox flow battery electrolytes , 2013 .

[14]  M. Skyllas-Kazacos,et al.  Evaluation of N-ethyl-N-methyl-morpholinium bromide and N-ethyl-N-methyl-pyrrolidinium bromide as bromine complexing agents in vanadium bromide redox flow batteries , 2013 .

[15]  Alasdair J. Crawford,et al.  1 kW/1 kWh advanced vanadium redox flow battery utilizing mixed acid electrolytes , 2013 .

[16]  Suqin Liu,et al.  Effects of organic additives containing NH2 and SO3H on electrochemical properties of vanadium redox flow battery , 2013 .

[17]  Suqin Liu,et al.  Effect of In3+ ions on the electrochemical performance of the positive electrolyte for vanadium redox flow batteries , 2013, Ionics.

[18]  M. Skyllas-Kazacos,et al.  Review of material research and development for vanadium redox flow battery applications , 2013 .

[19]  Qiao Liu,et al.  Identifying the active site in nitrogen-doped graphene for the VO2+/VO2(+) redox reaction. , 2013, ACS nano.

[20]  Xinxing Liang,et al.  Effect of l-glutamic acid on the positive electrolyte for all-vanadium redox flow battery , 2013 .

[21]  Suqin Liu,et al.  Improved performance of vanadium redox battery using methylsulfonic acid solution as supporting electrolyte , 2013 .

[22]  Bin Li,et al.  Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery. , 2013, Nano letters.

[23]  Gaoping Cao,et al.  Investigation on the Stability of Electrolyte in Vanadium Flow Batteries , 2012 .

[24]  Nanfang Wang,et al.  Influence of organic additives on electrochemical properties of the positive electrolyte for all-vanadium redox flow battery , 2012 .

[25]  K. Yan,et al.  Influence of Cr3+ concentration on the electrochemical behavior of the anolyte for vanadium redox flow batteries , 2012 .

[26]  Bin Li,et al.  Recent Progress in Redox Flow Battery Research and Development , 2012 .

[27]  Qinghua Liu,et al.  Tetrabutylammonium hexafluorophosphate and 1-ethyl-3-methyl imidazolium hexafluorophosphate ionic liquids as supporting electrolytes for non-aqueous vanadium redox flow batteries , 2012 .

[28]  Debi Zhou,et al.  Methanesulfonic acid solution as supporting electrolyte for zinc-vanadium redox battery , 2012 .

[29]  Changwei Hu,et al.  Coulter dispersant as positive electrolyte additive for the vanadium redox flow battery , 2012 .

[30]  Zhenguo Yang,et al.  Chloride supporting electrolytes for all-vanadium redox flow batteries. , 2011, Physical chemistry chemical physics : PCCP.

[31]  Tao Wu,et al.  Effect of organic additives on positive electrolyte for vanadium redox battery , 2011 .

[32]  Jun Liu,et al.  Effects of additives on the stability of electrolytes for all-vanadium redox flow batteries , 2011 .

[33]  G. Graff,et al.  A Stable Vanadium Redox‐Flow Battery with High Energy Density for Large‐Scale Energy Storage , 2011 .

[34]  Jun Liu,et al.  Towards understanding the poor thermal stability of V5+ electrolyte solution in Vanadium Redox Flow Batteries , 2011 .

[35]  Jun Liu,et al.  Nuclear magnetic resonance studies on vanadium(IV) electrolyte solutions for vanadium redox flow battery , 2010 .

[36]  Jun Liu,et al.  Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries , 2010 .

[37]  Ke‐long Huang,et al.  Characteristics of CTAB as Electrolyte Additive for Vanadium Redox Flow Battery: Characteristics of CTAB as Electrolyte Additive for Vanadium Redox Flow Battery , 2010 .

[38]  Maria Skyllas-Kazacos,et al.  Recent advances with UNSW vanadium‐based redox flow batteries , 2010 .

[39]  Charles W. Monroe,et al.  Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries , 2009 .

[40]  Faizur Rahman,et al.  Vanadium redox battery: Positive half-cell electrolyte studies , 2009 .

[41]  Xindong Wang,et al.  Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery , 2007 .

[42]  Maria Skyllas-Kazacos,et al.  Novel vanadium chloride/polyhalide redox flow battery , 2003 .

[43]  R. R. Moskalyk,et al.  Processing of vanadium: a review , 2003 .

[44]  M. Skyllas-Kazacos,et al.  Raman spectroscopy studies of concentrated vanadium redox battery positive electrolytes , 2001 .

[45]  Xiaoqiao Lu Spectroscopic study of vanadium(V) precipitation in the vanadium redox cell electrolyte , 2001 .

[46]  Maria Skyllas-Kazacos,et al.  Evaluation of Precipitation Inhibitors for Supersaturated Vanadyl Electrolytes for the Vanadium Redox Battery , 1999 .

[47]  A. Travyanov,et al.  New sources of raw materials for vanadium production , 1998 .

[48]  M. Skyllas-Kazacos,et al.  Solubility of vanadyl sulfate in concentrated sulfuric acid solutions , 1998 .

[49]  G. Leigh,et al.  New Chemistry of Vanadium(II) , 1996 .

[50]  Maria Skyllas-Kazacos,et al.  Chemical modification of graphite electrode materials for vanadium redox flow battery application—part II. Acid treatments , 1992 .

[51]  Maria Skyllas-Kazacos,et al.  Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment , 1992 .

[52]  H. Michibata,et al.  Raman spectral study on the structure of a hydrolytic dimer of the aquavanadium(III) ion , 1991 .

[53]  F. Hardcastle,et al.  Determination of niobium-oxygen bond distances and bond orders by Raman spectroscopy , 1991 .

[54]  M. Skyllas-Kazacos,et al.  Vanadium redox cell electrolyte optimization studies , 1990 .

[55]  Anthony G. Fane,et al.  New All‐Vanadium Redox Flow Cell , 1986 .

[56]  Charles E. Ophardt Synthesis and spectra of vanadium complexes , 1984 .

[57]  W. E. Thiessen,et al.  Dimerization of aquadioxovanadium(V) ion in concentrated perchloric and sulfuric acid media , 1984 .

[58]  C. Madic,et al.  Spectrophotometric identification of a mixed-valence cation-cation complex between aquadioxovanadium(V) and aquaoxovanadium(IV) ions in perchloric, sulfuric, and hydrochloric acid media , 1982 .

[59]  W. L. Marshall,et al.  Second Dissociation Constant of Sulfuric Acid from 25 to 350° Evaluated from Solubilities of Calcium Sulfate in Sulfuric Acid Solutions1,2 , 1966 .

[60]  C. Dijkgraaf Similarities in the electronic spectra of TiCl4 and VOCl3 , 1965 .

[61]  C. Dijkgraaf Electronic spectra of TiCl4, TiBr4 and VCl4 , 1965 .

[62]  H. Wendt,et al.  Fast Ionic Reactions in Solution. IV. The Formation of the Vanadyl Sulfate Complex in Aqueous Solution , 1963 .

[63]  C. S. Garner,et al.  Absorption Spectra of Vanadium(III) and Vanadium(IV) Ions in Complexing and Non-complexing Media , 1950 .

[64]  Joseph E Carpenter The Constitution of the Pentavalent Vanadium Ion in Acid Solution , 1934 .

[65]  M. Skyllas-Kazacos,et al.  Kinetics of VIII and VII Sulfate Precipitation Processes in Negative Half‐Cell Electrolyte of the Vanadium Redox Flow Battery , 2017 .

[66]  Chris Menictas,et al.  A High Energy Density Vanadium Redox Flow Battery with 3 M Vanadium Electrolyte , 2016 .

[67]  Suqin Liu,et al.  Influence of antimony ions in negative electrolyte on the electrochemical performance of vanadium redox flow batteries , 2015 .

[68]  Suqin Liu,et al.  Effect of Amino Acid Additives on the Positive Electrolyte of Vanadium Redox Flow Batteries , 2013 .

[69]  Wang Guixin,et al.  Influence of Mn2+ Concentration on the Electrochemical Behavior of the Anolyte for Vanadium Redox Flow Batteries , 2012 .

[70]  Zhijun Jia,et al.  Effect of Polyhydroxy-Alcohol on the Electrochemical Behavior of the Positive Electrolyte for Vanadium Redox Flow Batteries , 2012 .

[71]  Bianting Sun,et al.  Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution , 1991 .

[72]  W. Griffith,et al.  Raman studies on species in aqueous solutions. Part I. The vanadates , 1966 .

[73]  W. Schneider,et al.  NUCLEAR MAGNETIC RESONANCE INVESTIGATIONS OF SOME GROUP V METAL FLUORIDES AND OXYIONS , 1965 .

[74]  R. Richards,et al.  157. Nuclear magnetic resonance study of polyvanadate equilibria by use of vanadium-51 , 1965 .

[75]  F. Brito,et al.  Equilibrium Studies of Polyanions. VI. Polyvanadates in Alkaline Na(Cl) Medium. , 1959 .

[76]  J. F. Breazeale,et al.  Solubility of Calcium Sulphate in Aqueous Solutions of Sulphuric Acid , 2022 .