New forms of Levinson and Schur algorithms

The Levinson and Schur solutions to the adaptive filtering and parameter estimation problem of recursive least squares processing are described. Unnormalized versions of a newly developed Schur RLS adaptive filter are presented. A systolic array of the Schur RL adaptive filter is devised and its performance is illustrated with a typical example. The classical Levinson and Schur algorithms drop out as special cases of the more general Levinson and Schur RLS adaptive filtering algorithms. The recently introduced split Levinson and Schur algorithms, which are obtained by exploiting the symmetry in the Toeplitz-structured extended normal equations, are reviewed.<<ETX>>

[1]  F. Gustavson,et al.  Fast algorithms for rational Hermite approximation and solution of Toeplitz systems , 1979 .

[2]  A. Einstein Method for the determinination of the statistical values of observations concerning quantities subject to irregular fluctuations , 1987, IEEE ASSP Magazine.

[3]  I-Chang Jou,et al.  A novel implementation of pipelined Toeplitz system solver , 1986, Proceedings of the IEEE.

[4]  U. Appel,et al.  Recursive lattice algorithms with finite-duration windows , 1982, ICASSP.

[5]  H. T. Kung Why systolic architectures? , 1982, Computer.

[6]  James Durbin,et al.  The fitting of time series models , 1960 .

[7]  Manfred R. Schroeder,et al.  Linear predictive coding of speech: Review and current directions , 1985, IEEE Communications Magazine.

[8]  P. Whittle The Analysis of Multiple Stationary Time Series , 1953 .

[9]  H. T. Kung,et al.  Matrix Triangularization By Systolic Arrays , 1982, Optics & Photonics.

[10]  M. Morf Fast Algorithms for Multivariable Systems , 1974 .

[11]  W. F. Trench An Algorithm for the Inversion of Finite Toeplitz Matrices , 1964 .

[12]  David Y. Y. Yun,et al.  Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants , 1980, J. Algorithms.

[13]  S. J. Mason Feedback Theory-Further Properties of Signal Flow Graphs , 1956, Proceedings of the IRE.

[14]  G. Szegő,et al.  Über die Entwickelung einer analytischen Funktion nach den Polynomen eines Orthogonalsystems , 1921 .

[15]  J. L. Roux,et al.  A fixed point computation of partial correlation coefficients , 1977 .

[16]  J. Makhoul Stable and efficient lattice methods for linear prediction , 1977 .

[17]  A. Fettweis Wave digital filters: Theory and practice , 1986, Proceedings of the IEEE.

[18]  H. Krishna New split Levinson, Schur, and lattice algorithms for digital signal processing , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[19]  Russel E. Caflisch,et al.  An inverse problem for Toeplitz matrices and the synthesis of discrete transmission lines , 1981 .

[20]  Aldo Cumani On a covariance-lattice algorithm for linear prediction , 1982, ICASSP.

[21]  P. Strobach Efficient covariance ladder algorithms for finite arithmetic applications , 1987 .

[22]  Salvatore D. Morgera,et al.  The Levinson recurrence and fast algorithms for solving Toeplitz systems of linear equations , 1987, IEEE Trans. Acoust. Speech Signal Process..

[23]  John Makhoul Correction to "Stable and efficient lattice methods for linear prediction" , 1978 .

[24]  S. Kung,et al.  VLSI Array processors , 1985, IEEE ASSP Magazine.

[25]  T. Kailath,et al.  On a generalized Szegö- Levinson realization algorithm for optimal linear predictors based on a network synthesis approach , 1978 .

[26]  Jack E. Volder The CORDIC Trigonometric Computing Technique , 1959, IRE Trans. Electron. Comput..

[27]  Peter Strobach,et al.  Recursive covariance ladder algorithms for ARMA system identification , 1988, IEEE Trans. Acoust. Speech Signal Process..

[28]  Jean-Marc Delosme,et al.  Scattering Arrays For Matrix Computations , 1982, Optics & Photonics.

[29]  Andrew E. Yagle Multichannel coupled split algorithms for non-Hermitian block Toeplitz matrices , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[30]  Bishnu S. Atal,et al.  Predictive Coding of Speech at Low Bit Rates , 1982, IEEE Trans. Commun..

[31]  Peter Strobach Pure order recursive least-squares ladder algorithms , 1986, IEEE Trans. Acoust. Speech Signal Process..

[32]  Philippe Delsarte,et al.  The split Levinson algorithm , 1986, IEEE Trans. Acoust. Speech Signal Process..

[33]  A. Lindquist On Fredholm integral equations, Toeplitz equations and Kalman-Bucy filtering , 1975 .

[34]  G. Orlandi,et al.  Yule - Walker equations and Bartlett's bisection theory , 1985 .

[35]  B. Atal,et al.  Speech analysis and synthesis by linear prediction of the speech wave. , 1971, The Journal of the Acoustical Society of America.

[36]  Sun-Yuan Kung,et al.  A highly concurrent algorithm and pipeleined architecture for solving Toeplitz systems , 1983 .

[37]  Jean-Marc Delosme,et al.  Highly concurrent computing structures for matrix arithmetic and signal processing , 1982, Computer.

[38]  T. Kailath,et al.  An inverse scattering framework for several problems in signal processing , 1987, IEEE ASSP Magazine.

[39]  E. Bareiss Numerical solution of linear equations with Toeplitz and Vector Toeplitz matrices , 1969 .

[40]  J. L. Hock,et al.  An exact recursion for the composite nearest‐neighbor degeneracy for a 2×N lattice space , 1984 .

[41]  J. Makhoul,et al.  Linear prediction: A tutorial review , 1975, Proceedings of the IEEE.

[42]  Peter Strobach Recursive triangular array ladder algorithms , 1991, IEEE Trans. Signal Process..

[43]  Andrew E. Yagle Fast algorithms for estimation and signal processing: an inverse scattering framework , 1989, IEEE Trans. Acoust. Speech Signal Process..

[44]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .

[45]  Daniel T. L. Lee Canonical ladder form realizations and fast estimation algorithms , 1980 .

[46]  Thomas P. Barnwell,et al.  Recursive windowing for generating autocorrelation coefficients for LPC analysis , 1981 .

[47]  E. A. Robinson Spectral approach to geophysical inversion by Lorentz, Fourier, and Radon transforms , 1982 .

[48]  Philippe Delsarte,et al.  On the splitting of classical algorithms in linear prediction theory , 1987, IEEE Trans. Acoust. Speech Signal Process..