New forms of Levinson and Schur algorithms
暂无分享,去创建一个
[1] F. Gustavson,et al. Fast algorithms for rational Hermite approximation and solution of Toeplitz systems , 1979 .
[2] A. Einstein. Method for the determinination of the statistical values of observations concerning quantities subject to irregular fluctuations , 1987, IEEE ASSP Magazine.
[3] I-Chang Jou,et al. A novel implementation of pipelined Toeplitz system solver , 1986, Proceedings of the IEEE.
[4] U. Appel,et al. Recursive lattice algorithms with finite-duration windows , 1982, ICASSP.
[5] H. T. Kung. Why systolic architectures? , 1982, Computer.
[6] James Durbin,et al. The fitting of time series models , 1960 .
[7] Manfred R. Schroeder,et al. Linear predictive coding of speech: Review and current directions , 1985, IEEE Communications Magazine.
[8] P. Whittle. The Analysis of Multiple Stationary Time Series , 1953 .
[9] H. T. Kung,et al. Matrix Triangularization By Systolic Arrays , 1982, Optics & Photonics.
[10] M. Morf. Fast Algorithms for Multivariable Systems , 1974 .
[11] W. F. Trench. An Algorithm for the Inversion of Finite Toeplitz Matrices , 1964 .
[12] David Y. Y. Yun,et al. Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants , 1980, J. Algorithms.
[13] S. J. Mason. Feedback Theory-Further Properties of Signal Flow Graphs , 1956, Proceedings of the IRE.
[14] G. Szegő,et al. Über die Entwickelung einer analytischen Funktion nach den Polynomen eines Orthogonalsystems , 1921 .
[15] J. L. Roux,et al. A fixed point computation of partial correlation coefficients , 1977 .
[16] J. Makhoul. Stable and efficient lattice methods for linear prediction , 1977 .
[17] A. Fettweis. Wave digital filters: Theory and practice , 1986, Proceedings of the IEEE.
[18] H. Krishna. New split Levinson, Schur, and lattice algorithms for digital signal processing , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.
[19] Russel E. Caflisch,et al. An inverse problem for Toeplitz matrices and the synthesis of discrete transmission lines , 1981 .
[20] Aldo Cumani. On a covariance-lattice algorithm for linear prediction , 1982, ICASSP.
[21] P. Strobach. Efficient covariance ladder algorithms for finite arithmetic applications , 1987 .
[22] Salvatore D. Morgera,et al. The Levinson recurrence and fast algorithms for solving Toeplitz systems of linear equations , 1987, IEEE Trans. Acoust. Speech Signal Process..
[23] John Makhoul. Correction to "Stable and efficient lattice methods for linear prediction" , 1978 .
[24] S. Kung,et al. VLSI Array processors , 1985, IEEE ASSP Magazine.
[25] T. Kailath,et al. On a generalized Szegö- Levinson realization algorithm for optimal linear predictors based on a network synthesis approach , 1978 .
[26] Jack E. Volder. The CORDIC Trigonometric Computing Technique , 1959, IRE Trans. Electron. Comput..
[27] Peter Strobach,et al. Recursive covariance ladder algorithms for ARMA system identification , 1988, IEEE Trans. Acoust. Speech Signal Process..
[28] Jean-Marc Delosme,et al. Scattering Arrays For Matrix Computations , 1982, Optics & Photonics.
[29] Andrew E. Yagle. Multichannel coupled split algorithms for non-Hermitian block Toeplitz matrices , 1990, International Conference on Acoustics, Speech, and Signal Processing.
[30] Bishnu S. Atal,et al. Predictive Coding of Speech at Low Bit Rates , 1982, IEEE Trans. Commun..
[31] Peter Strobach. Pure order recursive least-squares ladder algorithms , 1986, IEEE Trans. Acoust. Speech Signal Process..
[32] Philippe Delsarte,et al. The split Levinson algorithm , 1986, IEEE Trans. Acoust. Speech Signal Process..
[33] A. Lindquist. On Fredholm integral equations, Toeplitz equations and Kalman-Bucy filtering , 1975 .
[34] G. Orlandi,et al. Yule - Walker equations and Bartlett's bisection theory , 1985 .
[35] B. Atal,et al. Speech analysis and synthesis by linear prediction of the speech wave. , 1971, The Journal of the Acoustical Society of America.
[36] Sun-Yuan Kung,et al. A highly concurrent algorithm and pipeleined architecture for solving Toeplitz systems , 1983 .
[37] Jean-Marc Delosme,et al. Highly concurrent computing structures for matrix arithmetic and signal processing , 1982, Computer.
[38] T. Kailath,et al. An inverse scattering framework for several problems in signal processing , 1987, IEEE ASSP Magazine.
[39] E. Bareiss. Numerical solution of linear equations with Toeplitz and Vector Toeplitz matrices , 1969 .
[40] J. L. Hock,et al. An exact recursion for the composite nearest‐neighbor degeneracy for a 2×N lattice space , 1984 .
[41] J. Makhoul,et al. Linear prediction: A tutorial review , 1975, Proceedings of the IEEE.
[42] Peter Strobach. Recursive triangular array ladder algorithms , 1991, IEEE Trans. Signal Process..
[43] Andrew E. Yagle. Fast algorithms for estimation and signal processing: an inverse scattering framework , 1989, IEEE Trans. Acoust. Speech Signal Process..
[44] Norbert Wiener,et al. Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .
[45] Daniel T. L. Lee. Canonical ladder form realizations and fast estimation algorithms , 1980 .
[46] Thomas P. Barnwell,et al. Recursive windowing for generating autocorrelation coefficients for LPC analysis , 1981 .
[47] E. A. Robinson. Spectral approach to geophysical inversion by Lorentz, Fourier, and Radon transforms , 1982 .
[48] Philippe Delsarte,et al. On the splitting of classical algorithms in linear prediction theory , 1987, IEEE Trans. Acoust. Speech Signal Process..