Multivariate Dependence Beyond Shannon Information

Accurately determining dependency structure is critical to discovering a system's causal organization. We recently showed that the transfer entropy fails in a key aspect of this---measuring information flow---due to its conflation of dyadic and polyadic relationships. We extend this observation to demonstrate that this is true of all such Shannon information measures when used to analyze multivariate dependencies. This has broad implications, particularly when employing information to express the organization and mechanisms embedded in complex systems, including the burgeoning efforts to combine complex network theory with information theory. Here, we do not suggest that any aspect of information theory is wrong. Rather, the vast majority of its informational measures are simply inadequate for determining the meaningful dependency structure within joint probability distributions. Therefore, such information measures are inadequate for discovering intrinsic causal relations. We close by demonstrating that such distributions exist across an arbitrary set of variables.

[1]  Eckehard Olbrich,et al.  Shared Information -- New Insights and Problems in Decomposing Information in Complex Systems , 2012, ArXiv.

[2]  Chung Chan,et al.  Multivariate Mutual Information Inspired by Secret-Key Agreement , 2015, Proceedings of the IEEE.

[3]  Wei Liu,et al.  The common information of N dependent random variables , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[4]  Joshua Garland,et al.  Model-free quantification of time-series predictability. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Christoph Salge,et al.  A Bivariate Measure of Redundant Information , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  L. Brillouin,et al.  Science and information theory , 1956 .

[7]  Te Sun Han,et al.  Multiple Mutual Informations and Multiple Interactions in Frequency Data , 1980, Inf. Control..

[8]  William J. McGill Multivariate information transmission , 1954, Trans. IRE Prof. Group Inf. Theory.

[9]  James P. Crutchfield,et al.  Information Flows? A Critique of Transfer Entropies , 2015, Physical review letters.

[10]  Marian Verhelst,et al.  Understanding Interdependency Through Complex Information Sharing , 2015, Entropy.

[11]  C. Granger Investigating causal relations by econometric models and cross-spectral methods , 1969 .

[12]  Oded Kafri,et al.  Information Theoretic Approach to Social Networks , 2014, ArXiv.

[13]  Prakash Narayan,et al.  When Is a Function Securely Computable? , 2011, IEEE Trans. Inf. Theory.

[14]  James P. Crutchfield,et al.  Chaotic Crystallography: How the physics of information reveals structural order in materials , 2014, ArXiv.

[15]  Sara Imari Walker,et al.  The informational architecture of the cell , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  Osvaldo A. Rosso,et al.  Intensive entropic non-triviality measure , 2004 .

[17]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[18]  Abbas El Gamal,et al.  Exact common information , 2014, 2014 IEEE International Symposium on Information Theory.

[19]  Vadas Gintautas,et al.  Identification of functional information subgraphs in complex networks. , 2007, Physical review letters.

[20]  Daniel Polani,et al.  Information Flows in Causal Networks , 2008, Adv. Complex Syst..

[21]  Randall D. Beer,et al.  Information Flow through a Model of the C. elegans Klinotaxis Circuit , 2015, PloS one.

[22]  Masud Mansuripur,et al.  Introduction to information theory , 1986 .

[23]  F. Jelinek,et al.  Perplexity—a measure of the difficulty of speech recognition tasks , 1977 .

[24]  Albert Y. Zomaya,et al.  The local information dynamics of distributed computation in complex systems , 2012 .

[25]  Ueli Maurer,et al.  The intrinsic conditional mutual information and perfect secrecy , 1997, Proceedings of IEEE International Symposium on Information Theory.

[26]  Yaneer Bar-Yam,et al.  Multiscale Information Theory and the Marginal Utility of Information , 2017, Entropy.

[27]  Raymond W. Yeung,et al.  A new outlook of Shannon's information measures , 1991, IEEE Trans. Inf. Theory.

[28]  Yaneer Bar-Yam,et al.  An Information-Theoretic Formalism for Multiscale Structure in Complex Systems , 2014, 1409.4708.

[29]  Michael I. Ham,et al.  Functional structure of cortical neuronal networks grown in vitro. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Albert Y. Zomaya,et al.  Local information transfer as a spatiotemporal filter for complex systems. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  A. J. Bell THE CO-INFORMATION LATTICE , 2003 .

[32]  James P. Crutchfield,et al.  Intersection Information Based on Common Randomness , 2013, Entropy.

[33]  Michael J. Berry,et al.  Network information and connected correlations. , 2003, Physical review letters.

[34]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[35]  Himanshu Tyagi,et al.  When Is a Function Securely Computable? , 2010, IEEE Transactions on Information Theory.

[36]  Randall D. Beer,et al.  Nonnegative Decomposition of Multivariate Information , 2010, ArXiv.

[37]  P. Fiedor Partial Mutual Information Analysis of Financial Networks , 2014, 1403.2050.

[38]  Erik M. Bollt,et al.  Causation entropy identifies indirect influences, dominance of neighbors and anticipatory couplings , 2014, 1504.03769.

[39]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[40]  John L. Kelly,et al.  A new interpretation of information rate , 1956, IRE Trans. Inf. Theory.

[41]  Frank Lad,et al.  Extropy: a complementary dual of entropy , 2011, ArXiv.

[42]  C. Shannon,et al.  The bandwagon (Edtl.) , 1956 .

[43]  Mikhail Prokopenko,et al.  Differentiating information transfer and causal effect , 2008, 0812.4373.

[44]  H. Marko,et al.  The Bidirectional Communication Theory - A Generalization of Information Theory , 1973, IEEE Transactions on Communications.

[45]  L. Goddard Information Theory , 1962, Nature.

[46]  Roman F. Nalewajski,et al.  Information Theory of Molecular Systems , 2006 .

[47]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[48]  Robin A. A. Ince Measuring multivariate redundant information with pointwise common change in surprisal , 2016, Entropy.

[49]  Shubin Liu,et al.  Information Functional Theory: Electronic Properties as Functionals of Information for Atoms and Molecules. , 2016, The journal of physical chemistry. A.

[50]  J. Harte Maximum Entropy and Ecology: A Theory of Abundance, Distribution, and Energetics , 2011 .

[51]  William Bialek,et al.  Entropy and Information in Neural Spike Trains , 1996, cond-mat/9603127.

[52]  Rick Quax,et al.  Stripping syntax from complexity: An information-theoretical perspective on complex systems , 2016 .

[53]  Larissa Albantakis,et al.  From the Phenomenology to the Mechanisms of Consciousness: Integrated Information Theory 3.0 , 2014, PLoS Comput. Biol..

[54]  N. Ay,et al.  A UNIFYING FRAMEWORK FOR COMPLEXITY MEASURES OF FINITE SYSTEMS , 2006 .

[55]  Ilya Nemenman,et al.  On the Sufficiency of Pairwise Interactions in Maximum Entropy Models of Networks , 2015, Journal of Statistical Physics.

[56]  Robert E. Ulanowicz,et al.  The Central Role of Information Theory in Ecology , 2011, Towards an Information Theory of Complex Networks.

[57]  Raymond W. Yeung,et al.  A First Course in Information Theory , 2002 .

[58]  J. Crutchfield,et al.  What did Erwin mean? The physics of information from the materials genomics of aperiodic crystals and water to molecular information catalysts and life , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[59]  J. Massey CAUSALITY, FEEDBACK AND DIRECTED INFORMATION , 1990 .

[60]  George A. Mashour,et al.  Assessing levels of consciousness with symbolic analysis , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[61]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[62]  James P. Crutchfield,et al.  Chaos Forgets and Remembers: Measuring Information Creation, Destruction, and Storage , 2013, ArXiv.

[63]  Edsger W. Dijkstra How do we tell truths that might hurt? , 1982, SIGP.

[64]  Te Sun Han,et al.  Linear Dependence Structure of the Entropy Space , 1975, Inf. Control..

[65]  Daniel Chicharro,et al.  Invariant Components of Synergy, Redundancy, and Unique Information among Three Variables , 2017, Entropy.

[66]  William Bialek,et al.  Reading a Neural Code , 1991, NIPS.

[67]  Marc Timme,et al.  Dynamic information routing in complex networks , 2015, Nature Communications.

[68]  Christof Koch,et al.  Quantifying synergistic mutual information , 2012, ArXiv.

[69]  Randall D. Beer,et al.  Generalized Measures of Information Transfer , 2011, ArXiv.

[70]  Evgueni A. Haroutunian,et al.  Information Theory and Statistics , 2011, International Encyclopedia of Statistical Science.

[71]  Michael Mandelstam,et al.  On the Bandwagon? , 2007 .

[72]  Renato Renner,et al.  A new measure for conditional mutual information and its properties , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[73]  Robin A. A. Ince The Partial Entropy Decomposition: Decomposing multivariate entropy and mutual information via pointwise common surprisal , 2017, ArXiv.

[74]  Eckehard Olbrich,et al.  Quantifying unique information , 2013, Entropy.

[75]  G. Crooks On Measures of Entropy and Information , 2015 .

[76]  James P. Crutchfield,et al.  Anatomy of a Bit: Information in a Time Series Observation , 2011, Chaos.

[77]  Yaneer Bar-Yam,et al.  Multiscale Complexity/Entropy , 2004, Adv. Complex Syst..

[78]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[79]  Schreiber,et al.  Measuring information transfer , 2000, Physical review letters.

[80]  Aaron D. Wyner,et al.  The common information of two dependent random variables , 1975, IEEE Trans. Inf. Theory.

[81]  Marco Scutari,et al.  Learning Bayesian Networks with the bnlearn R Package , 2009, 0908.3817.

[82]  G. Spagnolo,et al.  Networks of Relations , 2004 .

[83]  Tsachy Weissman,et al.  The Information Lost in Erasures , 2008, IEEE Transactions on Information Theory.

[84]  Lakhmi C. Jain,et al.  Introduction to Bayesian Networks , 2008 .

[85]  Mark D. Plumbley,et al.  A measure of statistical complexity based on predictive information , 2010, ArXiv.

[86]  M. Bals [INFORMATION THEORY IN BIOLOGY]. , 1963, Studii si cercetari de inframicrobiologie.

[87]  Peter Salamon,et al.  Entropy and the Time Evolution of Macroscopic Systems , 2008 .

[88]  Michael Satosi Watanabe,et al.  Information Theoretical Analysis of Multivariate Correlation , 1960, IBM J. Res. Dev..

[89]  Klaus Krippendorff,et al.  Information of interactions in complex systems , 2009, Int. J. Gen. Syst..

[90]  A. Ledberg,et al.  When two become one: the limits of causality analysis of brain dynamics. , 2012, PloS one.

[91]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[92]  Illtyd Trethowan Causality , 1938 .

[93]  Tie Liu,et al.  A marginal characterization of entropy functions for conditional mutually independent random variables (with application to Wyner's common information) , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).