Modeling of, and Reasoning with Recurrent Events with Imprecise Durations

In this paper we study how the framework of Petri nets can be extended and applied to study recurrent events. We use possibility theory to realistically model temporal properties of the recurrent processes being modeled by an extended Petri net. Such temporal properties include time-stamps stored in tokens and durations of firing the transitions. We apply our method to model the recurrent behavior of an automated manufacturing cell.

[1]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[2]  A. Ghafoor,et al.  A synchronization framework for communication of pre-orchestrated multimedia information , 1994, IEEE Network.

[3]  C. V. Ramamoorthy,et al.  Performance Evaluation of Asynchronous Concurrent Systems Using Petri Nets , 1980, IEEE Transactions on Software Engineering.

[4]  Hans-Michael Hanisch Analysis of Place/Transition Nets with Timed Arcs and its Application to Batch Process Control , 1993, Application and Theory of Petri Nets.

[5]  Rina Dechter,et al.  Temporal Constraint Networks , 1989, Artif. Intell..

[6]  Robert Valette,et al.  Fuzzy Petri Nets: An Overview , 1996 .

[7]  Ekkart Kindler,et al.  ESTL: A Temporal Logic for Events and States , 1998, ICATPN.

[8]  Patrick Sénac,et al.  Time Stream Petri Nets: A Model for Timed Multimedia Information , 1994, Application and Theory of Petri Nets.

[9]  Philippe Chrétienne,et al.  Timed Petri net schedules , 1987, European Workshop on Applications and Theory of Petri Nets.

[10]  Carolyn Brown,et al.  Temporal Logic and Categories of Petrie Nets , 1993, ICALP.

[11]  Janette Cardoso,et al.  Fuzziness in Petri Nets , 1998 .

[12]  Didier Dubois,et al.  Processing fuzzy temporal knowledge , 1989, IEEE Trans. Syst. Man Cybern..

[13]  James Lyle Peterson,et al.  Petri net theory and the modeling of systems , 1981 .

[14]  Peter B. Ladkin,et al.  Time Representation: A Taxonomy of Internal Relations , 1986, AAAI.

[15]  Nick Roussopoulos,et al.  Timing Requirements for Time-Driven Systems Using Augmented Petri Nets , 1983, IEEE Transactions on Software Engineering.

[16]  Makoto Tanabe,et al.  Timed Petri Nets and Temporal Linear Logic , 1997, ICATPN.

[17]  Ternary Structures ON REPRESENTATION OF , 1995 .

[18]  Lluis Godo,et al.  Possibilistic Temporal Reasoning based on Fuzzy Temporal Constraints , 1995, IJCAI.

[19]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[20]  Didier Dubois,et al.  Timed possibilistic logic , 1991, Fundam. Informaticae.

[21]  Philippe Fortemps,et al.  Jobshop scheduling with imprecise durations: a fuzzy approach , 1997, IEEE Trans. Fuzzy Syst..

[22]  Steve,et al.  Probabilistic Approach for Representing andReasoning with Repetitive Events , 1995 .

[23]  Miguel Felder,et al.  A Temporal Logic Approach to Implementation and Refinement in Timed Petri Nets , 1994, ICTL.

[24]  P. Merlin,et al.  Recoverability of Communication Protocols - Implications of a Theoretical Study , 1976, IEEE Transactions on Communications.

[25]  Janette Cardoso,et al.  Possibilistic Petri nets , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[26]  Rasaiah Loganantharaj,et al.  Possibilistic temporal propagation , 1999 .

[27]  Y. Yao,et al.  A Petri Net Model for Temporal Knowledge Representation and Reasoning , 1994, IEEE Trans. Syst. Man Cybern. Syst..