Improving Aboveground Forest Biomass Maps: From High-Resolution to National Scale

Forest aboveground biomass (AGB) estimation over large extents and high temporal resolution is crucial in managing Mediterranean forest ecosystems, which have been predicted to be very sensitive to climate change effects. Although many modeling procedures have been tested to assess forest AGB, most of them cover small areas and attain high accuracy in evaluations that are difficult to update and extrapolate without large uncertainties. In this study, focusing on the Region of Murcia in Spain (11,313 km2), we integrated forest AGB estimations, obtained from high-precision airborne laser scanning (ALS) data calibrated with plot-level ground-based measures and bio-geophysical spectral variables (eight different indices derived from MODIS computed at different temporal resolutions), as well as topographic factors as predictors. We used a quantile regression forest (QRF) to spatially predict biomass and the associated uncertainty. The fitted model produced a satisfactory performance (R2 0.71 and RMSE 9.99 t·ha−1) with the normalized difference vegetation index (NDVI) as the main vegetation index, in combination with topographic variables as environmental drivers. An independent validation carried out over the final predicted biomass map showed a satisfactory statistically-robust model (R2 0.70 and RMSE 10.25 t·ha−1), confirming its applicability at coarser resolutions.

[1]  P. Ciais,et al.  Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends , 2007, Proceedings of the National Academy of Sciences.

[2]  J. Roujean,et al.  Estimating PAR absorbed by vegetation from bidirectional reflectance measurements , 1995 .

[3]  P. Barrett,et al.  Antarctic topography at the Eocene–Oligocene boundary , 2012 .

[4]  D. Lu The potential and challenge of remote sensing‐based biomass estimation , 2006 .

[5]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[6]  P. Thenkabail,et al.  Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics , 2000 .

[7]  R. Nelson,et al.  Hierarchical model-based inference for forest inventory utilizing three sources of information , 2016, Annals of Forest Science.

[8]  J. Eitel,et al.  Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys , 2012 .

[9]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[10]  M. Maltamo,et al.  Combining ALS and NFI training data for forest management planning: a case study in Kuortane, Western Finland , 2009, European Journal of Forest Research.

[11]  G. Montero,et al.  Ecuaciones para la estimación de la biomasa en matorrales y arbustedos mediterráneos , 2013 .

[12]  Juan de la Riva,et al.  Temporal Transferability of Pine Forest Attributes Modeling Using Low-Density Airborne Laser Scanning Data , 2019, Remote. Sens..

[13]  Bradley C. Reed,et al.  Remote Sensing Phenology , 2009 .

[14]  Geoffrey G. Parker,et al.  The canopy surface and stand development: assessing forest canopy structure and complexity with near-surface altimetry , 2004 .

[15]  J. Paruelo,et al.  ANPP ESTIMATES FROM NDVI FOR THE CENTRAL GRASSLAND REGION OF THE UNITED STATES , 1997 .

[16]  Kevin J. Gaston,et al.  Measurement of fine-spatial-resolution 3D vegetation structure with airborne waveform lidar: Calibration and validation with voxelised terrestrial lidar , 2017 .

[17]  A. Skidmore,et al.  Narrow band vegetation indices overcome the saturation problem in biomass estimation , 2004 .

[18]  Nicolai Meinshausen,et al.  Quantile Regression Forests , 2006, J. Mach. Learn. Res..

[19]  M. D. Nelson,et al.  Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information , 2008 .

[20]  Xavier Pons,et al.  Reassessing global change research priorities in mediterranean terrestrial ecosystems: how far have we come and where do we go from here? , 2015 .

[21]  David E. Knapp,et al.  Estimating aboveground carbon density across forest landscapes of Hawaii: Combining FIA plot-derived estimates and airborne LiDAR , 2018, Forest Ecology and Management.

[22]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[23]  S. Magnussen,et al.  Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators , 1998 .

[24]  Gherardo Chirici,et al.  A meta-analysis and review of the literature on the k-Nearest Neighbors technique for forestry applications that use remotely sensed data , 2016 .

[25]  Daniel Tunák,et al.  Assessing horizontal accuracy of inventory plots in forests with different mix of tree species composition and development stage , 2018, Journal of Forest Science.

[26]  R. Valbuena,et al.  Influence of Global Navigation Satellite System errors in positioning inventory plots for tree-height distribution studies , 2011 .

[27]  Hernandez-Clemente Rocio,et al.  Impact of plot size and model selection on forest biomass estimation using airborne LiDAR: A case study of pine plantations in southern Spain , 2017 .

[28]  Bo Wu,et al.  Estimating spatiotemporal patterns of aboveground biomass using Landsat TM and MODIS images in the Mu Us Sandy Land, China , 2015 .

[29]  Terje Gobakken,et al.  Lidar sampling — Using an airborne profiler to estimate forest biomass in Hedmark County, Norway , 2012 .

[30]  Bin Xu,et al.  Remote Sensing-Based Biomass Estimation and Its Spatio-Temporal Variations in Temperate Grassland, Northern China , 2014, Remote. Sens..

[31]  R. Ruiz-Peinado,et al.  Producción de biomasa y fijación de CO2 por los bosques españoles , 2011 .

[32]  Hong S. He,et al.  Effects of spatial aggregation approaches on classified satellite imagery , 2002, Int. J. Geogr. Inf. Sci..

[33]  M. L. Guillén-Climent,et al.  High resolution forest inventory of pure and mixed stands at regional level combining National Forest Inventory field plots, Landsat, and low density lidar , 2018 .

[34]  Yunming Ye,et al.  Classifying Very High-Dimensional Data with Random Forests Built from Small Subspaces , 2012, Int. J. Data Warehous. Min..

[35]  Michael Bock,et al.  System for Automated Geoscientific Analyses (SAGA) v. 2.1.4 , 2015 .

[36]  Joanne C. White,et al.  Remote Sensing Technologies for Enhancing Forest Inventories: A Review , 2016 .

[37]  Joanne C. White,et al.  Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots , 2018 .

[38]  Alfredo Fernández-Landa,et al.  Integration of UAV, Sentinel-1 and Sentinel-2 Data for Mangrove Plantations Aboveground Biomass Monitoring in Senegal , 2019 .

[39]  Aihua Li,et al.  Lidar Aboveground Vegetation Biomass Estimates in Shrublands: Prediction, Uncertainties and Application to Coarser Scales , 2017, Remote. Sens..

[40]  G. Caudullo,et al.  Assessing Shifts of Mediterranean and Arid Climates Under RCP4.5 and RCP8.5 Climate Projections in Europe , 2018, Pure and Applied Geophysics.

[41]  Lluís Brotons,et al.  Integrating fire spread patterns in fire modelling at landscape scale , 2016, Environ. Model. Softw..

[42]  Alexander Kolesnikov,et al.  LiDAR-Assisted Multi-Source Program (LAMP) for Measuring Above Ground Biomass and Forest Carbon , 2017, Remote. Sens..

[43]  F. Kraxner,et al.  Identifying effects of land use cover changes and climate change on terrestrial ecosystems and carbon stocks in Mexico , 2018, Global Environmental Change.

[44]  H. Mcnairn,et al.  Mapping Corn Residue Cover on Agricultural Fields in Oxford County, Ontario, Using Thematic Mapper , 1993 .

[45]  Juan de la Riva,et al.  Estimation of Total Biomass in Aleppo Pine Forest Stands Applying Parametric and Nonparametric Methods to Low-Density Airborne Laser Scanning Data , 2018 .

[46]  Gherardo Chirici,et al.  Modeling Mediterranean forest structure using airborne laser scanning data , 2017, Int. J. Appl. Earth Obs. Geoinformation.

[47]  Hong Chi,et al.  National Forest Aboveground Biomass Mapping from ICESat/GLAS Data and MODIS Imagery in China , 2015, Remote. Sens..

[48]  F. Hartig,et al.  Using synthetic data to evaluate the benefits of large field plots for forest biomass estimation with LiDAR , 2018, Remote Sensing of Environment.

[49]  N. Pettorelli,et al.  Using the satellite-derived NDVI to assess ecological responses to environmental change. , 2005, Trends in ecology & evolution.

[50]  B. Holben Characteristics of maximum-value composite images from temporal AVHRR data , 1986 .

[51]  Aaron Moody,et al.  Photosynthetic activity of US biomes: responses to the spatial variability and seasonality of precipitation and temperature , 2004 .

[52]  J. Fox,et al.  Applied Regression Analysis and Generalized Linear Models , 2008 .

[53]  R. Valbuena,et al.  Within-Species Benefits of Back-projecting Airborne Laser Scanner and Multispectral Sensors in Monospecific Pinus sylvestris Forests , 2013 .

[54]  Ibrahim Ozdemir,et al.  Linear transformation to minimize the effects of variability in understory to estimate percent tree canopy cover using RapidEye data , 2014 .

[55]  A. Huete,et al.  A Modified Soil Adjusted Vegetation Index , 1994 .

[56]  David W. Cash,et al.  Linking global and local scales: designing dynamic assessment and management processes , 2000 .

[57]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[58]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[59]  Christiane Schmullius,et al.  Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico , 2018, Carbon Balance and Management.

[60]  Andreas Fries,et al.  Estimation of Above Ground Biomass in a Tropical Mountain Forest in Southern Ecuador Using Airborne LiDAR Data , 2018, Remote. Sens..

[61]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[62]  Jean Pierre Henry Balbaud Ometto,et al.  Amazon forest biomass density maps: tackling the uncertainty in carbon emission estimates , 2014, Climatic Change.

[63]  Hui Qing Liu,et al.  A feedback based modification of the NDVI to minimize canopy background and atmospheric noise , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[64]  Maggi Kelly,et al.  Lidar with multi-temporal MODIS provide a means to upscale predictions of forest biomass , 2015 .

[65]  Cardona Alzate,et al.  Predicción y selección de variables con bosques aleatorios en presencia de variables correlacionadas , 2020 .

[66]  Juan Papadakis,et al.  Climates of the world and their agricultural potentialities. , 1966 .

[67]  Remo Bertani,et al.  Exploiting the capabilities of the Sentinel-2 multi spectral instrument for predicting growing stock volume in forest ecosystems , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[68]  Miguel Delibes,et al.  Use of Descriptors of Ecosystem Functioning for Monitoring a National Park Network: A Remote Sensing Approach , 2009, Environmental management.

[69]  J. Canadell,et al.  Managing Forests for Climate Change Mitigation , 2008, Science.

[70]  Thanh-Nghi Do,et al.  Classifying Very-High-Dimensional Data with Random Forests of Oblique Decision Trees , 2009, EGC.

[71]  Gregory Asner,et al.  Spatially-Explicit Testing of a General Aboveground Carbon Density Estimation Model in a Western Amazonian Forest Using Airborne LiDAR , 2015, Remote. Sens..

[72]  J. Chen Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications , 1996 .

[73]  E. Næsset,et al.  Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser , 2008 .

[74]  Simon D. Jones,et al.  A Comparison of Imputation Approaches for Estimating Forest Biomass Using Landsat Time-Series and Inventory Data , 2018, Remote. Sens..

[75]  I. Moore,et al.  Digital terrain modelling: A review of hydrological, geomorphological, and biological applications , 1991 .

[76]  R. McGaughey AND OTHER DATA USING 2 D AND 3 D VISUALIZATION TECHNIQUES , 2003 .

[77]  Nancy F. Glenn,et al.  Landsat 8 and ICESat-2: Performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass , 2016 .

[78]  R. J. Pike,et al.  Elevation-Relief Ratio, Hypsometric Integral, and Geomorphic Area-Altitude Analysis , 1971 .

[79]  C. Jordan Derivation of leaf-area index from quality of light on the forest floor , 1969 .

[80]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[81]  J. V. Soares,et al.  Distribution of aboveground live biomass in the Amazon basin , 2007 .

[82]  StinsonG.,et al.  Mapping attributes of Canada’s forests at moderate resolution through kNN and MODIS imagery , 2014 .