Crystal structure of cone arrestin at 2.3A: evolution of receptor specificity.

[1]  Robert J. Lefkowitz,et al.  Transduction of Receptor Signals by ß-Arrestins , 2005, Science.

[2]  S. Semple-Rowland,et al.  GC1 deletion prevents light-dependent arrestin translocation in mouse cone photoreceptor cells. , 2005, Investigative ophthalmology & visual science.

[3]  J. Benovic,et al.  Arrestin2 expression selectively increases during neural differentiation , 2004, Journal of neurochemistry.

[4]  Cédric Notredame,et al.  3DCoffee: combining protein sequences and structures within multiple sequence alignments. , 2004, Journal of molecular biology.

[5]  Olivier Poirot,et al.  3DCoffee@igs: a web server for combining sequences and structures into a multiple sequence alignment , 2004, Nucleic Acids Res..

[6]  J. Hurley,et al.  Visual Pigment Phosphorylation but Not Transducin Translocation Can Contribute to Light Adaptation in Zebrafish Cones , 2004, Neuron.

[7]  V. Gurevich,et al.  The molecular acrobatics of arrestin activation. , 2004, Trends in pharmacological sciences.

[8]  J. Benovic,et al.  Mapping the Arrestin-Receptor Interface , 2004, Journal of Biological Chemistry.

[9]  Bernhard Rupp,et al.  Effective electron-density map improvement and structure validation on a Linux multi-CPU web cluster: The TB Structural Genomics Consortium Bias Removal Web Service. , 2003, Acta crystallographica. Section D, Biological crystallography.

[10]  P. MacLeish,et al.  Identification and light-dependent translocation of a cone-specific antigen, cone arrestin, recognized by monoclonal antibody 7G6. , 2003, Investigative ophthalmology & visual science.

[11]  M. Simon,et al.  Light-Dependent Translocation of Arrestin in the Absence of Rhodopsin Phosphorylation and Transducin Signaling , 2003, The Journal of Neuroscience.

[12]  C. Craft,et al.  Mouse cone arrestin expression pattern: light induced translocation in cone photoreceptors. , 2002, Molecular vision.

[13]  V. Gurevich,et al.  Transition of Arrestin into the Active Receptor-binding State Requires an Extended Interdomain Hinge* , 2002, The Journal of Biological Chemistry.

[14]  R. Radu,et al.  Isomerization and Oxidation of Vitamin A in Cone-Dominant Retinas A Novel Pathway for Visual-Pigment Regeneration in Daylight , 2002, Neuron.

[15]  V. Arshavsky,et al.  Like Night and Day Rods and Cones Have Different Pigment Regeneration Pathways , 2002, Neuron.

[16]  C. Chavkin,et al.  Conservation of the Phosphate-sensitive Elements in the Arrestin Family of Proteins* , 2002, The Journal of Biological Chemistry.

[17]  J. Benovic,et al.  Arrestin2 and arrestin3 are differentially expressed in the rat brain during postnatal development , 2002, Neuroscience.

[18]  C. Brenner,et al.  Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis. , 2002, Biochemistry.

[19]  P. Sigler,et al.  Crystal structure of beta-arrestin at 1.9 A: possible mechanism of receptor binding and membrane Translocation. , 2001, Structure.

[20]  C. Schubert,et al.  An Additional Phosphate-binding Element in Arrestin Molecule , 2000, The Journal of Biological Chemistry.

[21]  V. Gurevich,et al.  Cloning and functional characterization of salamander rod and cone arrestins. , 2000, Investigative ophthalmology & visual science.

[22]  M. Simon,et al.  Mice Lacking G-Protein Receptor Kinase 1 Have Profoundly Slowed Recovery of Cone-Driven Retinal Responses , 2000, The Journal of Neuroscience.

[23]  J. Benovic,et al.  [29] Arrestin: Mutagenesis, expression, purification, and functional characterization , 2000 .

[24]  D. Engelman,et al.  Visual Arrestin Activity May Be Regulated by Self-association* , 1999, The Journal of Biological Chemistry.

[25]  P B Sigler,et al.  How Does Arrestin Respond to the Phosphorylated State of Rhodopsin?* , 1999, The Journal of Biological Chemistry.

[26]  P. Sigler,et al.  A Model for Arrestin’s Regulation: The 2.8 Å Crystal Structure of Visual Arrestin , 1999, Cell.

[27]  C. Chavkin,et al.  Targeted Construction of Phosphorylation-independent β-Arrestin Mutants with Constitutive Activity in Cells* , 1999, The Journal of Biological Chemistry.

[28]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[29]  B. Knox,et al.  Cloning and expression of a Xenopus short wavelength cone pigment. , 1998, Experimental eye research.

[30]  V. Gurevich The Selectivity of Visual Arrestin for Light-activated Phosphorhodopsin Is Controlled by Multiple Nonredundant Mechanisms* , 1998, The Journal of Biological Chemistry.

[31]  J. Bowmaker Evolution of colour vision in vertebrates , 1998, Eye.

[32]  G. Büldt,et al.  X-ray crystal structure of arrestin from bovine rod outer segments , 1998, Nature.

[33]  A. Cideciyan,et al.  Null mutation in the rhodopsin kinase gene slows recovery kinetics of rod and cone phototransduction in man. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[34]  J. Benovic,et al.  The role of receptor kinases and arrestins in G protein-coupled receptor regulation. , 1998, Annual review of pharmacology and toxicology.

[35]  M. Caron,et al.  A β-Arrestin/Green Fluorescent Protein Biosensor for Detecting G Protein-coupled Receptor Activation* , 1997, The Journal of Biological Chemistry.

[36]  Y. Shichida,et al.  Photochemical and biochemical properties of chicken blue-sensitive cone visual pigment. , 1997, Biochemistry.

[37]  J. Benovic,et al.  Mechanism of Quenching of Phototransduction , 1997, The Journal of Biological Chemistry.

[38]  J. Benovic,et al.  Mechanism of phosphorylation-recognition by visual arrestin and the transition of arrestin into a high affinity binding state. , 1997, Molecular pharmacology.

[39]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[40]  J. Benovic,et al.  β-Arrestin acts as a clathrin adaptor in endocytosis of the β2-adrenergic receptor , 1996, Nature.

[41]  Jürgen Sühnel,et al.  HBexplore - a new tool for identifying and analysing hydrogen bonding patterns in biological macromolecules , 1996, Comput. Appl. Biosci..

[42]  V. Gurevich Use of bacteriophage RNA polymerase in RNA synthesis. , 1996, Methods in enzymology.

[43]  S. Archer,et al.  Neurobiology and Clinical Aspects of the Outer Retina , 1995, Springer Netherlands.

[44]  Y. Shichida,et al.  Difference in molecular properties between chicken green and rhodopsin as related to the functional difference between cone and rod photoreceptor cells. , 1995, Biochemistry.

[45]  D. Whitmore,et al.  The arrestin superfamily: cone arrestins are a fourth family , 1995, FEBS letters.

[46]  J. Benovic,et al.  Visual Arrestin Binding to Rhodopsin , 1995, The Journal of Biological Chemistry.

[47]  J L Benovic,et al.  Arrestin Interactions with G Protein-coupled Receptors , 1995, The Journal of Biological Chemistry.

[48]  S. Kawamura Phototransduction, excitation and adaptation , 1995 .

[49]  Y. Fukada,et al.  Is chicken green-sensitive cone visual pigment a rhodopsin-like pigment? A comparative study of the molecular properties between chicken green and rhodopsin. , 1994, Biochemistry.

[50]  A. Brünger,et al.  Torsion angle dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement , 1994, Proteins.

[51]  G. Inana,et al.  X‐Arrestin: a new retinal arrestin mapping to the X chromosome , 1993, FEBS letters.

[52]  C. Sanders,et al.  Polypeptide variants of beta-arrestin and arrestin3. , 1993, The Journal of biological chemistry.

[53]  J L Benovic,et al.  Visual arrestin interaction with rhodopsin. Sequential multisite binding ensures strict selectivity toward light-activated phosphorylated rhodopsin. , 1993, The Journal of biological chemistry.

[54]  Axel T. Brunger,et al.  Assessment of Phase Accuracy by Cross Validation: the Free R Value. Methods and Applications , 1993 .

[55]  S. Pelletier,et al.  Design, chemical synthesis, and expression of genes for the three human color vision pigments. , 1991, Biochemistry.

[56]  K. Palczewski,et al.  Regulation of rhodopsin dephosphorylation by arrestin. , 1989, The Journal of biological chemistry.

[57]  K. Hofmann,et al.  Kinetics, binding constant, and activation energy of the 48-kDa protein-rhodopsin complex by extra-metarhodopsin II. , 1989, Biochemistry.

[58]  L. Donoso,et al.  Primary and secondary structure of bovine retinal S antigen (48-kDa protein). , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[59]  H. Hamm,et al.  Protein complement of rod outer segments of frog retina. , 1986, Biochemistry.

[60]  S. Colowick,et al.  Methods in Enzymology , Vol , 1966 .