Geometric Spanners for Weighted Point Sets

AbstractLet (S,d) be a finite metric space, where each element p∈S has a non-negative weight w (p). We study spanners for the set S with respect to the following weighted distance function: $$\mathbf{d}_{\omega}(p,q)=\left\{\begin{array}{ll}0&\mbox{ if $p=q$,}\\ \operatorname {w}(p)+\mathbf{d}(p,q)+ \operatorname {w}(q)&\mbox{ if $p\neq q$.}\end{array}\right.$$ We present a general method for turning spanners with respect to the d-metric into spanners with respect to the dω-metric. For any given ε>0, we can apply our method to obtain (5+ε)-spanners with a linear number of edges for three cases: points in Euclidean space ℝd, points in spaces of bounded doubling dimension, and points on the boundary of a convex body in ℝd where d is the geodesic distance function.We also describe an alternative method that leads to (2+ε)-spanners for weighted point points in ℝd and for points on the boundary of a convex body in ℝd. The number of edges in these spanners is O(nlog n). This bound on the stretch factor is nearly optimal: in any finite metric space and for any ε>0, it is possible to assign weights to the elements such that any non-complete graph has stretch factor larger than 2−ε.

[1]  Paul B. Callahan,et al.  Dealing with higher dimensions: the well-separated pair decomposition and its applications , 1995 .

[2]  J. Heinonen Lectures on Analysis on Metric Spaces , 2000 .

[3]  Robert Krauthgamer,et al.  Bounded geometries, fractals, and low-distortion embeddings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[4]  R. V. Stee,et al.  Packing Rectangles into 2 OPT Bins Using Rotations , 2008 .

[5]  Micha Sharir,et al.  Approximating shortest paths on a convex polytope in three dimensions , 1997, JACM.

[6]  P. Assouad Plongements lipschitziens dans Rn , 2003 .

[7]  Lee-Ad Gottlieb,et al.  An Optimal Dynamic Spanner for Doubling Metric Spaces , 2008, ESA.

[8]  Joachim Gudmundsson,et al.  Region-Fault Tolerant Geometric Spanners , 2007, SODA '07.

[9]  S. Rao Kosaraju,et al.  Faster algorithms for some geometric graph problems in higher dimensions , 1993, SODA '93.

[10]  Bulletin de la Société Mathématique de France , 2022 .

[11]  Kunal Talwar,et al.  Bypassing the embedding: algorithms for low dimensional metrics , 2004, STOC '04.

[12]  S. Rao Kosaraju,et al.  A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.

[13]  Sariel Har-Peled,et al.  Fast construction of nets in low dimensional metrics, and their applications , 2004, SCG.

[14]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[15]  Prosenjit Bose,et al.  Spanners of Additively Weighted Point Sets , 2011, J. Discrete Algorithms.

[16]  R. V. Benson Euclidean Geometry and Convexity , 1966 .

[17]  Richard Cole,et al.  Searching dynamic point sets in spaces with bounded doubling dimension , 2006, STOC '06.

[18]  Kurt Mehlhorn,et al.  Algorithms - ESA 2008, 16th Annual European Symposium, Karlsruhe, Germany, September 15-17, 2008. Proceedings , 2008, ESA.

[19]  Sariel Har-Peled,et al.  New constructions of SSPDs and their applications , 2012, Comput. Geom..

[20]  Kasturi R. Varadarajan A divide-and-conquer algorithm for min-cost perfect matching in the plane , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[21]  Giri Narasimhan,et al.  Geometric spanner networks , 2007 .

[22]  Liam Roditty Fully Dynamic Geometric Spanners , 2007, SCG '07.

[23]  Béla Bollobás,et al.  On separating systems , 2007, Eur. J. Comb..

[24]  Michael T. Goodrich,et al.  Balanced aspect ratio trees: combining the advantages of k-d trees and octrees , 1999, SODA '99.

[25]  P. Assouad Plongements lipschitziens dans ${\bbfR}\sp n$ , 1983 .

[26]  Patrice Assouad Plongements lipschitziens dans ${\mathbb {R}}^n$ , 1983 .