Optimal experimental design with the sigma point method.

Using mathematical models for a quantitative description of dynamical systems requires the identification of uncertain parameters by minimising the difference between simulation and measurement. Owing to the measurement noise also, the estimated parameters possess an uncertainty expressed by their variances. To obtain highly predictive models, very precise parameters are needed. The optimal experimental design (OED) as a numerical optimisation method is used to reduce the parameter uncertainty by minimising the parameter variances iteratively. A frequently applied method to define a cost function for OED is based on the inverse of the Fisher information matrix. The application of this traditional method has at least two shortcomings for models that are nonlinear in their parameters: (i) it gives only a lower bound of the parameter variances and (ii) the bias of the estimator is neglected. Here, the authors show that by applying the sigma point (SP) method a better approximation of characteristic values of the parameter statistics can be obtained, which has a direct benefit on OED. An additional advantage of the SP method is that it can also be used to investigate the influence of the parameter uncertainties on the simulation results. The SP method is demonstrated for the example of a widely used biological model.

[1]  A Kremling,et al.  Exploiting the bootstrap method for quantifying parameter confidence intervals in dynamical systems. , 2006, Metabolic engineering.

[2]  Bernd Hitzmann,et al.  Experimental design for optimal parameter estimation of an enzyme kinetic process based on the analysis of the Fisher information matrix. , 2006, Journal of theoretical biology.

[3]  E. Klipp,et al.  Biochemical networks with uncertain parameters. , 2005, Systems biology.

[4]  K. S. Brown,et al.  Optimal experimental design in an epidermal growth factor receptor signalling and down-regulation model. , 2007, IET systems biology.

[5]  Jignesh Gangadwala,et al.  Optimal Design of Combined Reaction Distillation Processes , 2007 .

[6]  Eva Balsa-Canto,et al.  Optimal design of dynamic experiments for improved estimation of kinetic parameters of thermal degradation , 2007 .

[7]  S. Julier,et al.  A General Method for Approximating Nonlinear Transformations of Probability Distributions , 1996 .

[8]  Christopher R. Myers,et al.  Universally Sloppy Parameter Sensitivities in Systems Biology Models , 2007, PLoS Comput. Biol..

[9]  Luc Pronzato,et al.  Optimal experimental design and some related control problems , 2008, Autom..

[10]  Matthias Reuss,et al.  Optimal Experimental Design for Parameter Estimation in Unstructured Growth Models , 1994 .

[11]  Jan Van Impe,et al.  Feed rate optimization for fed-batch bioreactors: from optimal process performance to optimal parameter identification , 1998 .

[12]  J. F. Van Impe,et al.  Sensitivity analysis of microbial growth parameter distributions with respect to data quality and quantity by using Monte Carlo analysis , 2004, Math. Comput. Simul..

[13]  Sandro Macchietto,et al.  Model-based design of experiments for parameter precision: State of the art , 2008 .

[14]  Kwang-Hyun Cho,et al.  Experimental Design in Systems Biology, Based on Parameter Sensitivity Analysis Using a Monte Carlo Method: A Case Study for the TNFα-Mediated NF-κ B Signal Transduction Pathway , 2003, Simul..

[15]  Håkan Hjalmarsson,et al.  Optimal experiment design in closed loop , 2005 .

[16]  Nicolas Brunel,et al.  Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference , 2007, Bioinform..

[17]  Eric Walter,et al.  Identification of Parametric Models: from Experimental Data , 1997 .

[18]  Sailes K. Sengijpta Fundamentals of Statistical Signal Processing: Estimation Theory , 1995 .

[19]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[20]  A. Holmberg On the practical identifiability of microbial growth models incorporating Michaelis-Menten type nonlinearities , 1982 .