An effective method for monitoring the vibration data of bearings to diagnose and minimize defects

Monitoring of vibration in machine tools is becoming a very important application in industry to reduce machine failures, maintenance costs, and dead time. In this paper, we propose a method to identify possible faults based on vibration data from which predictions about the working condition of the machine tools can be made. We used an accelerometer to collect the vibration data from which to analyse the health of machine tools by diagnosing whether they are in good or faulty condition for working. In our experiments, we introduced a machine called the Reliance Electric motor, which has a bearing running inside it. Our research analyses vibration data from components of the bearing including the outer bearing, inner bearing, and rolling element. The experimental results show that our method is highly accurate in diagnosing failures and significantly reduces the maintenance costs of machine tools.