VNAI-NDVI-space and polar coordinate method for assessing crop leaf chlorophyll content and fractional cover

[1]  Minzan Li,et al.  Transfer-learning-based approach for leaf chlorophyll content estimation of winter wheat from hyperspectral data , 2021, Remote Sensing of Environment.

[2]  Shaoqiang Wang,et al.  Optimizing LUT-based inversion of leaf chlorophyll from hyperspectral lidar data: Role of cost functions and regulation strategies , 2021, Int. J. Appl. Earth Obs. Geoinformation.

[3]  Haidi Ibrahim,et al.  Estimation of mass, chlorophylls, and anthocyanins of Spirodela polyrhiza with smartphone acquired images , 2021, Comput. Electron. Agric..

[4]  A. Fisher,et al.  Refining medium resolution fractional cover for arid Australia to detect vegetation dynamics and wind erosion susceptibility on longitudinal dunes , 2021 .

[5]  Jingzhe Wang,et al.  Mapping leaf chlorophyll content of mangrove forests with Sentinel-2 images of four periods , 2021, Int. J. Appl. Earth Obs. Geoinformation.

[6]  Jing M. Chen,et al.  Fine-scale leaf chlorophyll distribution across a deciduous forest through two-step model inversion from Sentinel-2 data , 2021 .

[7]  Qingrui Chang,et al.  Estimation of Apple Tree Leaf Chlorophyll Content Based on Machine Learning Methods , 2021, Remote. Sens..

[8]  Tan Liu,et al.  A method combining ELM and PLSR (ELM-P) for estimating chlorophyll content in rice with feature bands extracted by an improved ant colony optimization algorithm , 2021, Comput. Electron. Agric..

[9]  S. Suárez‐Seoane,et al.  Hybrid inversion of radiative transfer models based on high spatial resolution satellite reflectance data improves fractional vegetation cover retrieval in heterogeneous ecological systems after fire. , 2021, Remote sensing of environment.

[10]  O. Bruzzone,et al.  Archetypal temporal dynamics of arid and semi-arid rangelands , 2021 .

[11]  Liangyun Liu,et al.  Improving the Retrieval of Crop Canopy Chlorophyll Content Using Vegetation Index Combinations , 2021, Remote. Sens..

[12]  Martha C. Anderson,et al.  Reconstructing daily 30 m NDVI over complex agricultural landscapes using a crop reference curve approach , 2020 .

[13]  Jing M. Chen,et al.  Improved estimation of leaf chlorophyll content of row crops from canopy reflectance spectra through minimizing canopy structural effects and optimizing off-noon observation time , 2020 .

[14]  Haikuan Feng,et al.  A robust spectral angle index for remotely assessing soybean canopy chlorophyll content in different growing stages , 2020, Plant Methods.

[15]  Liangyun Liu,et al.  Retrieving Crop Leaf Chlorophyll Content Using an Improved Look-Up-Table Approach by Combining Multiple Canopy Structures and Soil Backgrounds , 2020, Remote. Sens..

[16]  Ruiliang Pu,et al.  Estimation of aboveground biomass of Robinia pseudoacacia forest in the Yellow River Delta based on UAV and Backpack LiDAR point clouds , 2020, Int. J. Appl. Earth Obs. Geoinformation.

[17]  Bing Lu,et al.  Evaluating Empirical Regression, Machine Learning, and Radiative Transfer Modelling for Estimating Vegetation Chlorophyll Content Using Bi-Seasonal Hyperspectral Images , 2019, Remote. Sens..

[18]  Jun Huang,et al.  Spectral-Spatial Attention Networks for Hyperspectral Image Classification , 2019, Remote. Sens..

[19]  Wenjiang Huang,et al.  A New Integrated Vegetation Index for the Estimation of Winter Wheat Leaf Chlorophyll Content , 2019, Remote. Sens..

[20]  Weimin Ju,et al.  Retrieving leaf chlorophyll content using a matrix-based vegetation index combination approach , 2019, Remote Sensing of Environment.

[21]  P. Kempeneers,et al.  Chlorophyll content estimation in an open-canopy conifer forest with Sentinel-2A and hyperspectral imagery in the context of forest decline , 2019, Remote sensing of environment.

[22]  B. Pradhan,et al.  Estimating chlorophyll content at leaf scale in viroid-inoculated oil palm seedlings (Elaeis guineensis Jacq.) using reflectance spectra (400 nm–1050 nm) , 2019, International Journal of Remote Sensing.

[23]  S. Santabarbara,et al.  Photochemistry beyond the red limit in chlorophyll f–containing photosystems , 2018, Science.

[24]  Wolfram Mauser,et al.  Evaluation of the PROSAIL Model Capabilities for Future Hyperspectral Model Environments: A Review Study , 2018, Remote. Sens..

[25]  Guijun Yang,et al.  A Comparison of Regression Techniques for Estimation of Above-Ground Winter Wheat Biomass Using Near-Surface Spectroscopy , 2018, Remote. Sens..

[26]  Cibele Hummel do Amaral,et al.  Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations , 2017 .

[27]  Stéphane Jacquemoud,et al.  PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle , 2017 .

[28]  Z. Niu,et al.  Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system , 2016 .

[29]  Huanjun Liu,et al.  Quantifying the Impact of NDVIsoil Determination Methods and NDVIsoil Variability on the Estimation of Fractional Vegetation Cover in Northeast China , 2016, Remote. Sens..

[30]  Xiaochen Zou,et al.  Photographic measurement of leaf angles in field crops , 2014 .

[31]  Quan Sun,et al.  ractional vegetation cover estimation in arid and semi-arid environments using J-1 satellite hyperspectral data , 2012 .

[32]  Clement Atzberger,et al.  Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat , 2010 .

[33]  W. Verhoef,et al.  PROSPECT+SAIL models: A review of use for vegetation characterization , 2009 .

[34]  Chaoyang Wu,et al.  Estimating chlorophyll content from hyperspectral vegetation indices : Modeling and validation , 2008 .

[35]  Jin Chen,et al.  Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction , 2006 .

[36]  Jingfeng Xiao,et al.  A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central New Mexico, USA , 2005 .

[37]  J. Chen,et al.  Global mapping of foliage clumping index using multi-angular satellite data , 2005 .

[38]  Yves Goulas,et al.  Dualex: a new instrument for field measurements of epidermal ultraviolet absorbance by chlorophyll fluorescence. , 2004, Applied optics.

[39]  F. J. Ponzoni,et al.  Sun and view angle effects on NDVI determination of land cover types in the Brazilian Amazon region with hyperspectral data , 2004 .

[40]  Pablo J. Zarco-Tejada,et al.  Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops , 2004 .

[41]  John R. Miller,et al.  Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture , 2002 .

[42]  A. Gitelson,et al.  Novel algorithms for remote estimation of vegetation fraction , 2002 .

[43]  G. A. Blackburn,et al.  Quantifying Chlorophylls and Caroteniods at Leaf and Canopy Scales: An Evaluation of Some Hyperspectral Approaches , 1998 .

[44]  G. Gutman,et al.  The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models , 1998 .

[45]  J. Clevers,et al.  The robustness of canopy gap fraction estimates from red and near-infrared reflectances: A comparison of approaches , 1995 .

[46]  A. Gitelson,et al.  Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation , 1994 .

[47]  Guangjian Yan,et al.  Evaluation of the Vegetation-Index-Based Dimidiate Pixel Model for Fractional Vegetation Cover Estimation , 2022, IEEE Transactions on Geoscience and Remote Sensing.

[48]  Minzan Li,et al.  Improvement of chlorophyll content estimation on maize leaf by vein removal in hyperspectral image , 2021, Comput. Electron. Agric..

[49]  Minzan Li,et al.  Development of crop chlorophyll detector based on a type of interference filter optical sensor , 2021, Comput. Electron. Agric..

[50]  Bo Jiang,et al.  Improving the spatiotemporal fusion accuracy of fractional vegetation cover in agricultural regions by combining vegetation growth models , 2021, Int. J. Appl. Earth Obs. Geoinformation.

[51]  Yuri A. Gritz,et al.  Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. , 2003, Journal of plant physiology.

[52]  T. Nilson A theoretical analysis of the frequency of gaps in plant stands , 1971 .