Group Divisible Codes and Their Application in the Construction of Optimal Constant-Composition Codes of Weight Three

The concept of group divisible codes, a generalization of group divisible designs with constant block size, is introduced in this paper. This new class of codes is shown to be useful in recursive constructions for constant-weight and constant-composition codes. Large classes of group divisible codes are constructed which enabled the determination of the sizes of optimal constant-composition codes of weight three (and specified distance), leaving only four cases undetermined. Previously, the sizes of constant-composition codes of weight three were known only for those of sufficiently large length.

[1]  Cunsheng Ding,et al.  Algebraic constructions of constant composition codes , 2005, IEEE Trans. Inf. Theory.

[2]  Gennian Ge,et al.  On group-divisible designs with block size four and group-type 6um1 , 2004, Discret. Math..

[3]  Douglas R. Stinson,et al.  On resolvable group-divisible designs with block size 3 , 1987 .

[4]  Douglas R. Stinson,et al.  Frames for Kirkman triple systems , 1987, Discret. Math..

[5]  A. J. Han Vinck,et al.  On constant-composition codes over Zq , 2003, IEEE Trans. Inf. Theory.

[6]  C. Colbourn,et al.  Mutually orthogonal latin squares (MOLS) , 2006 .

[7]  Victor Zinoviev,et al.  Spherical codes generated by binary partitions of symmetric pointsets , 1995, IEEE Trans. Inf. Theory.

[8]  Cunsheng Ding,et al.  Combinatorial constructions of optimal constant-composition codes , 2005, IEEE Transactions on Information Theory.

[9]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs II. The Structure of PBD-Closed Sets and the Existence Conjectures , 1972, J. Comb. Theory, Ser. A.

[10]  Hao Shen,et al.  The PBD-Closure of Constant-Composition Codes , 2007, IEEE Transactions on Information Theory.

[11]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs I. Composition Theorems and Morphisms , 1972, J. Comb. Theory, Ser. A.

[12]  Oliver D. King,et al.  Bounds for DNA Codes with Constant GC-Content , 2003, Electron. J. Comb..

[13]  Yeow Meng Chee,et al.  Uniform Group Divisible Designs with Block Sizes Three and n , 2002, Graphs Comb..

[14]  Charles J. Colbourn,et al.  On constant composition codes , 2006, Discret. Appl. Math..

[15]  Charles J. Colbourn,et al.  Constructions for Permutation Codes in Powerline Communications , 2004, Des. Codes Cryptogr..

[16]  Cunsheng Ding,et al.  A Construction of Optimal Constant Composition Codes , 2006, Des. Codes Cryptogr..

[17]  Cunsheng Ding,et al.  A family of optimal constant-composition codes , 2005, IEEE Transactions on Information Theory.

[18]  Navin Kashyap,et al.  On the Design of Codes for DNA Computing , 2005, WCC.

[19]  M. Svanstrom Constructions of ternary constant-composition codes with weight three , 2000 .

[20]  Stoyan N. Kapralov,et al.  Enumeration of Optimal Ternary Constant-Composition Codes , 2003, Probl. Inf. Transm..

[21]  Haim Hanani,et al.  Balanced incomplete block designs and related designs , 1975, Discret. Math..

[22]  Toby Berger,et al.  Review of Information Theory: Coding Theorems for Discrete Memoryless Systems (Csiszár, I., and Körner, J.; 1981) , 1984, IEEE Trans. Inf. Theory.

[23]  Katherine Heinrich,et al.  Existence of orthogonal latin squares with aligned subsquares , 1986, Discret. Math..

[24]  A. Vinck,et al.  On Constant-Composition Codes Over , 2003 .

[25]  Rolf S. Rees,et al.  Two new direct product-type constructions for resolvable group-divisible designs , 1993 .

[26]  Dean G. Hoffman,et al.  A New Class of Group Divisible Designs with Block Size Three , 1992, J. Comb. Theory, Ser. A.

[27]  Joel Spencer,et al.  Maximal consistent families of triples , 1968 .

[28]  Torleiv Kløve,et al.  Permutation arrays for powerline communication and mutually orthogonal latin squares , 2004, IEEE Transactions on Information Theory.

[29]  Alexander Schrijver,et al.  Group divisible designs with block-size four , 2006, Discret. Math..

[30]  Decision Systems.,et al.  Zero error decision feedback capacity of discrete memoryless channels , 1989 .

[31]  Patric R. J. Östergård,et al.  Bounds and constructions for ternary constant-composition codes , 2002, IEEE Trans. Inf. Theory.