Robust Matrix Root-Clustering Analysis through Extended KYP Lemma

This paper is dedicated to robust matrix eigenvalue clustering in a subregion ${\mathcal D}$ of the complex plane. A norm-bounded uncertainty is considered. $\cD$ is any intersection and/or union of half planes, discs, and outsides of discs. This work aims at computing the associated complex $\cD$-stability radius. This challenge was already tackled in a recent paper but the technique therein may fail or lead to conservative results when the subregions overlap. The present paper proposes to circumvent those limits thanks to an extended version of the Kalman-Yakubovich-Popov (KYP) lemma which is deduced from the so-called generalized S-procedure.

[1]  I. Petersen A stabilization algorithm for a class of uncertain linear systems , 1987 .

[2]  Rajni V. Patel,et al.  Quantitative measures of robustness for multivariable systems , 1980 .

[3]  S. Gutman,et al.  A general theory for matrix root-clustering in subregions of the complex plane , 1981 .

[4]  Olivier Bachelier,et al.  Bounds for uncertain matrix root-clustering in a union of subregions , 1999 .

[5]  W. Bakker,et al.  Performance robustness bounds for linear systems to guarantee root-clustering in second order subregions of the complex plane , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[6]  Edward J. Davison,et al.  A formula for computation of the real stability radius , 1995, Autom..

[7]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .

[8]  P. Khargonekar,et al.  Stability robustness bounds for linear state-space models with structured uncertainty , 1987 .

[9]  Diederich Hinrichsen,et al.  Stability Radii and Spectral Value Sets for Real Matrix Perturbations , 1993 .

[10]  Rama K. Yedavalli,et al.  Flight control application of new stability robustness bounds for linear uncertain systems , 1993 .

[11]  A. Rantzer On the Kalman-Yakubovich-Popov lemma , 1996 .

[12]  Shinji Hara,et al.  Generalized KYP lemma: unified frequency domain inequalities with design applications , 2005, IEEE Transactions on Automatic Control.

[13]  T. Iwasaki,et al.  Generalized S-procedure and finite frequency KYP lemma , 2000 .

[14]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[15]  Olivier Bachelier,et al.  Robust matrix 𝒟U‐stability analysis , 2003 .

[16]  Rama K. Yedavalli,et al.  Eigenstructure perturbation analysis in disjointed domains for linear uncertain systems , 1997 .

[17]  Olivier Bachelier,et al.  An approach for robust matrix root-clustering analysis in a union of regions , 2005, IMA J. Math. Control. Inf..

[18]  J. Willems Least squares stationary optimal control and the algebraic Riccati equation , 1971 .

[19]  Rama K. Yedavalli,et al.  Robust root clustering for linear uncertain systems using generalized lyapunov theory , 1993, Autom..

[20]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[21]  J. Doyle,et al.  Quadratic stability with real and complex perturbations , 1990 .

[22]  Sheng-Guo Wang,et al.  Robust pole clustering in a good ride quality region of aircraft for matrices with structured uncertainties , 2003, Autom..

[23]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[24]  P. Khargonekar,et al.  Robust stabilization of uncertain linear systems: quadratic stabilizability and H/sup infinity / control theory , 1990 .

[25]  J. L. Howland,et al.  Matrix equations and the separation of matrix eigenvalues , 1971 .

[26]  Olivier Bachelier,et al.  Robust root-clustering of a matrix in intersections or unions of regions: Addendum , 2004, Proceedings of the 44th IEEE Conference on Decision and Control.

[27]  Pierre Apkarian,et al.  Robust pole placement in LMI regions , 1999, IEEE Trans. Autom. Control..

[28]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .