문장 길이가 한영 통계기반 기계번역에 미치는 영향 분석

본 논문에서는 한영 통계기반 기계번역에서 한국어 문장 길이의 변화에 따른 번역 성능의 변화를 분석하고자 한다. 일반적으로 통계기반 기계번역은 정렬기법을 이용하는데 문장의 길이가 길수록 많은 변형(distortion)이 이루어진다. 특히 한국어와 영어처럼 어순이 매우 다를 경우, 문장 길이의 변화에 따라 그 변형이 더욱 심할 수 있다. 본 논문에서는 이러한 성질이 통계기반 기계번역에 어떠한 영향을 주는지를 실험적으로 살펴보고자 한다. 본 논문에서 비교적 잘 정렬된 203,310개의 문장을 학습데이터로 사용하였고, 세종 병렬 말뭉치로부터 89,309개의 문장을 추출하여 실험데이터로 사용하였다. 실험데이터는 한국어 문장의 길이에 따라 5구간(1~4, 5~8, 9~13, 14~19, 20~n 개)로 나뉘었다. 각 구간은 가능한 문장의 수가 비슷하도록 하였으며, 17,126, 18,507, 20,336, 17,884, 15,456개의 문장이 포함되었다. 데이터들은 모두 어절단위로 토큰을 나누었다. 본 논문에서는 한영 번역을 중심으로 평가되었다. 첫 번째 구간에서 가장 좋은 성능인 0.0621 BLEU를 보였으며, 마지막 구간에서 가장 좋지 않은 0.0251 BLEU를 보였다. 이는 문장의 길이가 길수록 변역 성능이 좋지 않음을 알 수 있었다. 문장이 길수록 구가 길어지고 구간의 수식이 복잡해지므로 번역의 성능은 점차 떨어진다. 이것을 볼 때, 구번역을 먼저 한 후, 다시 문장 번역을 한다면 좀더 높은 기계번역의 성능을 기대할 수 있을 것이다.