The genome of Cryptosporidium hominis

Cryptosporidium species cause acute gastroenteritis and diarrhoea worldwide. They are members of the Apicomplexa—protozoan pathogens that invade host cells by using a specialized apical complex and are usually transmitted by an invertebrate vector or intermediate host. In contrast to other Apicomplexans, Cryptosporidium is transmitted by ingestion of oocysts and completes its life cycle in a single host. No therapy is available, and control focuses on eliminating oocysts in water supplies. Two species, C. hominis and C. parvum, which differ in host range, genotype and pathogenicity, are most relevant to humans. C. hominis is restricted to humans, whereas C. parvum also infects other mammals. Here we describe the eight-chromosome ∼9.2-million-base genome of C. hominis. The complement of C. hominis protein-coding genes shows a striking concordance with the requirements imposed by the environmental niches the parasite inhabits. Energy metabolism is largely from glycolysis. Both aerobic and anaerobic metabolisms are available, the former requiring an alternative electron transport system in a simplified mitochondrion. Biosynthesis capabilities are limited, explaining an extensive array of transporters. Evidence of an apicoplast is absent, but genes associated with apical complex organelles are present. C. hominis and C. parvum exhibit very similar gene complements, and phenotypic differences between these parasites must be due to subtle sequence divergence.

[1]  M. J. LaGier,et al.  Cryptosporidium parvum: the first protist known to encode a putative polyketide synthase. , 2002, Gene.

[2]  J. Kieft,et al.  A general method for rapid and nondenaturing purification of RNAs. , 2004, RNA.

[3]  J. Priest,et al.  The immunodominant 17-kDa antigen from Cryptosporidium parvum is glycosylphosphatidylinositol-anchored. , 2001, Molecular and biochemical parasitology.

[4]  G. Varani,et al.  Current topics in RNA-protein recognition: control of specificity and biological function through induced fit and conformational capture. , 2001, Biochemistry.

[5]  J. Keithly,et al.  Expression and functional characterization of a giant Type I fatty acid synthase (CpFAS1) gene from Cryptosporidium parvum. , 2004, Molecular and biochemical parasitology.

[6]  T. Yagi,et al.  Expression and Characterization of the Flavoprotein Subcomplex Composed of 50-kDa (NQO1) and 25-kDa (NQO2) Subunits of the Proton-translocating NADH-Quinone Oxidoreductase of Paracoccus denitrificans(*) , 1996, The Journal of Biological Chemistry.

[7]  S. J. Upton,et al.  Polyamine biosynthesis in Cryptosporidium parvum and its implications for chemotherapy. , 1997, Molecular and biochemical parasitology.

[8]  Š. Vaňáčová,et al.  Malic enzymes of Trichomonas vaginalis: two enzyme families, two distinct origins. , 2004, Gene.

[9]  C. Clarke,et al.  Reproductive Fitness and Quinone Content of Caenorhabditis elegans clk-1 Mutants Fed Coenzyme Q Isoforms of Varying Length* , 2003, Journal of Biological Chemistry.

[10]  R. Moreno-Sánchez,et al.  Cytosol-mitochondria transfer of reducing equivalents by a lactate shuttle in heterotrophic Euglena. , 2003, European journal of biochemistry.

[11]  Sarah A Teichmann,et al.  Integrated mapping, chromosomal sequencing and sequence analysis of Cryptosporidium parvum. , 2003, Genome research.

[12]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[13]  S. Bryant,et al.  CDART: protein homology by domain architecture. , 2002, Genome research.

[14]  K. Joiner,et al.  Toxoplasma gondii Rab6 Mediates a Retrograde Pathway for Sorting of Constitutively Secreted Proteins to the Golgi Complex* , 2003, The Journal of Biological Chemistry.

[15]  G. H. Coombs,et al.  Evolutionary relationships among protozoa. , 1998 .

[16]  M. Gelfand,et al.  Riboswitches: the oldest mechanism for the regulation of gene expression? , 2004, Trends in genetics : TIG.

[17]  C. Wilson,et al.  2.8 A crystal structure of the malachite green aptamer. , 2000, Journal of molecular biology.

[18]  Miklós Müller,et al.  Primary structure and eubacterial relationships of the pyruvate:Ferredoxin oxidoreductase of the amitochondriate eukaryote Trichomonas vaginalis , 1995, Journal of Molecular Evolution.

[19]  K. Anderson,et al.  Kinetic Characterization of Bifunctional Thymidylate Synthase-Dihydrofolate Reductase (TS-DHFR) from Cryptosporidium hominis , 2004, Journal of Biological Chemistry.

[20]  K. Joiner,et al.  AP-1 in Toxoplasma gondii Mediates Biogenesis of the Rhoptry Secretory Organelle from a Post-Golgi Compartment* , 2003, The Journal of Biological Chemistry.

[21]  D. Horner,et al.  A single eubacterial origin of eukaryotic pyruvate: ferredoxin oxidoreductase genes: implications for the evolution of anaerobic eukaryotes. , 1999, Molecular biology and evolution.

[22]  P. Nygaard,et al.  Definition of a Second Bacillus subtilis pur Regulon Comprising the pur and xpt-pbuX Operons plus pbuG, nupG (yxjA), and pbuE (ydhL) , 2003, Journal of bacteriology.

[23]  B. Böttcher,et al.  The gross structure of the respiratory complex I: a Lego System. , 2004, Biochimica et biophysica acta.

[24]  Grant R. Zimmermann,et al.  Interlocking structural motifs mediate molecular discrimination by a theophylline-binding RNA , 1997, Nature Structural Biology.

[25]  Thomas A. Steitz,et al.  RNA tertiary interactions in the large ribosomal subunit: The A-minor motif , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  R. Breaker,et al.  Immobilized RNA switches for the analysis of complex chemical and biological mixtures , 2001, Nature Biotechnology.

[27]  I. Hrdý,et al.  Primary Structure of the Hydrogenosomal Malic Enzyme of Trichomonas vaginalis and Its Relationship to Homologous Enzymes 1 , 1995, The Journal of eukaryotic microbiology.

[28]  R. Haselkorn,et al.  Growth of Toxoplasma gondii is inhibited by aryloxyphenoxypropionate herbicides targeting acetyl-CoA carboxylase. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Patricia J. Johnson,et al.  Ancient Invasions: From Endosymbionts to Organelles , 2004, Science.

[30]  R. Fayer,et al.  Cryptosporidium hominis n. sp. (Apicomplexa: Cryptosporidiidae) from Homo sapiens , 2002, The Journal of eukaryotic microbiology.

[31]  D. Roos,et al.  Constitutive Calcium-independent Release of Toxoplasma gondii Dense Granules Occurs through the NSF/SNAP/SNARE/Rab Machinery* , 1999, The Journal of Biological Chemistry.

[32]  D. Horner,et al.  Iron hydrogenases and the evolution of anaerobic eukaryotes. , 2000, Molecular biology and evolution.

[33]  M. J. LaGier,et al.  Mitochondrial-type iron-sulfur cluster biosynthesis genes (IscS and IscU) in the apicomplexan Cryptosporidium parvum. , 2003, Microbiology.

[34]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[35]  Ping Xu,et al.  Complete Genome Sequence of the Apicomplexan, Cryptosporidium parvum , 2004, Science.

[36]  Y. Chan,et al.  The common and the distinctive features of the bulged-G motif based on a 1.04 A resolution RNA structure. , 2003, Nucleic acids research.

[37]  K. Y. Choi,et al.  Structural characterization and corepressor binding of the Escherichia coli purine repressor , 1992, Journal of bacteriology.

[38]  J. Williamson Induced fit in RNA–protein recognition , 2000, Nature Structural Biology.

[39]  P. J. Johnson,et al.  A common evolutionary origin for mitochondria and hydrogenosomes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[40]  S. Tzipori,et al.  Cryptosporidiosis: biology, pathogenesis and disease. , 2002, Microbes and infection.

[41]  N. V. Sidorenko,et al.  PARASITOPHOROUS VACUOLE: MORPHOFUNCTIONAL DIVERSITY IN DIFFERENT COCCIDIAN GENERA (A SHORT INSIGHT INTO THE PROBLEM) , 2002, Cell biology international.

[42]  Ronald R. Breaker,et al.  Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP , 1999, Nature Structural Biology.

[43]  D. Horner,et al.  Mitochondria and hydrogenosomes are two forms of the same fundamental organelle. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[44]  I. Tinoco,et al.  Use of ultra stable UNCG tetraloop hairpins to fold RNA structures: thermodynamic and spectroscopic applications. , 1995, Nucleic acids research.

[45]  R. Breaker,et al.  Gene regulation by riboswitches , 2004, Nature Reviews Molecular Cell Biology.

[46]  S. Tzipori,et al.  Genetic Analysis of a Cryptosporidium parvum Human Genotype 1 Isolate Passaged through Different Host Species , 2002, Infection and Immunity.

[47]  W. Doolittle,et al.  A possible mitochondrial gene in the early-branching amitochondriate protist Trichomonas vaginalis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[48]  S. Krishna,et al.  Multiple Splice Variants Encode a Novel Adenylyl Cyclase of Possible Plastid Origin Expressed in the Sexual Stage of the Malaria Parasite Plasmodium falciparum* , 2003, Journal of Biological Chemistry.

[49]  Detlef D. Leipe,et al.  Evolutionary history of "early-diverging" eukaryotes: the excavate taxon Carpediemonas is a close relative of Giardia. , 2002, Molecular biology and evolution.

[50]  Fabienne Thomarat,et al.  Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi , 2001, Nature.

[51]  M Yarus,et al.  Diversity of oligonucleotide functions. , 1995, Annual review of biochemistry.

[52]  Jessica C Kissinger,et al.  Gene transfer in the evolution of parasite nucleotide biosynthesis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Ricardo Flores,et al.  Peripheral regions of natural hammerhead ribozymes greatly increase their self‐cleavage activity , 2003, The EMBO journal.

[54]  Michael Y. Galperin,et al.  Acetyl-CoA Synthetase from the Amitochondriate EukaryoteGiardia lamblia Belongs to the Newly Recognized Superfamily of Acyl-CoA Synthetases (Nucleoside Diphosphate-forming)* , 2000, The Journal of Biological Chemistry.

[55]  D. G. Lloyd,et al.  Molecular data suggest an early acquisition of the mitochondrion endosymbiont , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[56]  W. Martin,et al.  The hydrogen hypothesis for the first eukaryote , 1998, Nature.

[57]  M. Schumacher,et al.  Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by alpha helices. , 1994, Science.

[58]  Jeffrey E. Barrick,et al.  Riboswitches Control Fundamental Biochemical Pathways in Bacillus subtilis and Other Bacteria , 2003, Cell.

[59]  C. Kundrot,et al.  RNA Tertiary Structure Mediation by Adenosine Platforms , 1996, Science.

[60]  S. Schmidt,et al.  Subforms and In Vitro Reconstitution of the NAD-Reducing Hydrogenase of Alcaligenes eutrophus , 1998, Journal of bacteriology.

[61]  J. Walker,et al.  Conservation of sequences of subunits of mitochondrial complex I and their relationships with other proteins. , 1992, Biochimica et biophysica acta.

[62]  D. Patel,et al.  Molecular recognition in the FMN-RNA aptamer complex. , 1996, Journal of molecular biology.

[63]  J. Keithly,et al.  Cryptosporidium parvum Cpn60 targets a relict organelle , 2003, Current Genetics.

[64]  E. Westhof,et al.  Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity , 2003, Nature Structural Biology.

[65]  T. Friedrich,et al.  The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane‐bound multisubunit hydrogenases , 2000, FEBS letters.

[66]  Thomas Terwilliger,et al.  SOLVE and RESOLVE: automated structure solution, density modification and model building. , 2004, Journal of synchrotron radiation.

[67]  J. Keithly,et al.  Cryptosporidium parvum appears to lack a plastid genome. , 2000, Microbiology.

[68]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[69]  J. Pflugrath,et al.  The finer things in X-ray diffraction data collection. , 1999, Acta crystallographica. Section D, Biological crystallography.

[70]  R. Breaker,et al.  Adenine riboswitches and gene activation by disruption of a transcription terminator , 2004, Nature Structural &Molecular Biology.

[71]  R. Meganathan Ubiquinone biosynthesis in microorganisms. , 2001, FEMS microbiology letters.

[72]  S. Silverman,et al.  Rube Goldberg goes (ribo)nuclear? Molecular switches and sensors made from RNA. , 2003, RNA.

[73]  T. Yagi,et al.  Identification of amino acid residues associated with the [2Fe‐2S] cluster of the 25 kDa (NQO2) subunit of the proton‐translocating NADH‐quinone oxidoreductase of Paracoccus denitrificans , 1994, FEBS letters.

[74]  M. Parsons,et al.  Pathways involved in environmental sensing in trypanosomatids. , 2000, Parasitology today.

[75]  J. Harris,et al.  Ultrastructure, fractionation and biochemical analysis of Cryptosporidium parvum sporozoites. , 1999, International journal for parasitology.

[76]  D. Clemens,et al.  Failure to detect DNA in hydrogenosomes of Trichomonas vaginalis by nick translation and immunomicroscopy. , 2000, Molecular and biochemical parasitology.

[77]  Jennifer A. Doudna,et al.  A universal mode of helix packing in RNA , 2001, Nature Structural Biology.

[78]  L. Tetley,et al.  Ultrastructural analysis of the sporozoite of Cryptosporidium parvum. , 1998, Microbiology.