Generalized group sparse classifiers with application in fMRI brain decoding

The perplexing effects of noise and high feature dimensionality greatly complicate functional magnetic resonance imaging (fMRI) classification. In this paper, we present a novel formulation for constructing “Generalized Group Sparse Classifiers” (GSSC) to alleviate these problems. In particular, we propose an extension of group LASSO that permits associations between features within (predefined) groups to be modeled. Integrating this new penalty into classifier learning enables incorporation of additional prior information beyond group structure. In the context of fMRI, GGSC provides a flexible means for modeling how the brain is functionally organized into specialized modules (i.e. groups of voxels) with spatially proximal voxels often displaying similar level of brain activity (i.e. feature associations). Applying GSSC to real fMRI data improved predictive performance over standard classifiers, while providing more neurologically interpretable classifier weight patterns. Our results thus demonstrate the importance of incorporating prior knowledge into classification problems.

[1]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[2]  Yaroslav O. Halchenko,et al.  Brain Reading Using Full Brain Support Vector Machines for Object Recognition: There Is No Face Identification Area , 2008, Neural Computation.

[3]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[4]  T. Carlson,et al.  Patterns of Activity in the Categorical Representations of Objects , 2003, Journal of Cognitive Neuroscience.

[5]  A. Ravishankar Rao,et al.  Prediction and interpretation of distributed neural activity with sparse models , 2009, NeuroImage.

[6]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[7]  Tom M. Mitchell,et al.  Learning to Decode Cognitive States from Brain Images , 2004, Machine Learning.

[8]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[9]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[10]  Polina Golland,et al.  Detecting stable distributed patterns of brain activation using Gini contrast , 2011, NeuroImage.

[11]  Mohamed Hebiri,et al.  Regularization with the Smooth-Lasso procedure , 2008, 0803.0668.

[12]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[13]  Lawrence Carin,et al.  Joint Classifier and Feature Optimization for Comprehensive Cancer Diagnosis Using Gene Expression Data , 2004, J. Comput. Biol..

[14]  J. Fodor Précis of The Modularity of Mind , 1985, Behavioral and Brain Sciences.

[15]  Jinbo Bi,et al.  Dimensionality Reduction via Sparse Support Vector Machines , 2003, J. Mach. Learn. Res..

[16]  Jieping Ye,et al.  Multi-Task Feature Learning Via Efficient l2, 1-Norm Minimization , 2009, UAI.

[17]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[18]  Carlo Miniussi,et al.  The role of the prefrontal cortex in sentence comprehension: An rTMS study , 2008, Cortex.

[19]  Yuxiao Hu,et al.  Learning a Spatially Smooth Subspace for Face Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  David A. Rottenberg,et al.  Spatial SVM for feature selection and fMRI activation detection , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[21]  Ghassan Hamarneh,et al.  Generalized Sparse Classifiers for Decoding Cognitive States in fMRI , 2010, MLMI.

[22]  J. Haynes Brain Reading: Decoding Mental States From Brain Activity In Humans , 2011 .

[23]  Kaustubh Supekar,et al.  Sparse logistic regression for whole-brain classification of fMRI data , 2010, NeuroImage.

[24]  Lawrence Carin,et al.  Sparse multinomial logistic regression: fast algorithms and generalization bounds , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Bertrand Thirion,et al.  Multi-Class Sparse Bayesian Regression for Neuroimaging Data Analysis , 2010, MLMI.

[26]  Jean-Baptiste Poline,et al.  Dealing with the shortcomings of spatial normalization: Multi‐subject parcellation of fMRI datasets , 2006, Human brain mapping.

[27]  Richard S. J. Frackowiak,et al.  Functional anatomy of a common semantic system for words and pictures , 1996, Nature.

[28]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[29]  R. Tibshirani,et al.  A note on the group lasso and a sparse group lasso , 2010, 1001.0736.

[30]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[31]  Neil D. Lawrence,et al.  Fast Sparse Gaussian Process Methods: The Informative Vector Machine , 2002, NIPS.

[32]  Masa-aki Sato,et al.  Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns , 2008, NeuroImage.

[33]  Han Liu,et al.  Blockwise coordinate descent procedures for the multi-task lasso, with applications to neural semantic basis discovery , 2009, ICML '09.

[34]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Yonina C. Eldar,et al.  Collaborative hierarchical sparse modeling , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[36]  Jiawei Han,et al.  Spectral Regression: A Unified Approach for Sparse Subspace Learning , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[37]  Shuicheng Yan,et al.  Graph Embedding and Extensions: A General Framework for Dimensionality Reduction , 2007 .

[38]  G. Rees,et al.  Predicting the orientation of invisible stimuli from activity in human primary visual cortex , 2005, Nature Neuroscience.

[39]  P. Bühlmann,et al.  The group lasso for logistic regression , 2008 .