An item response theory analysis of the matrix reasoning item bank (MaRs-IB)

[1]  Peter B. Jones,et al.  Decision-making ability, psychopathology, and brain connectivity , 2021, Neuron.

[2]  Y. Niv,et al.  Inattentive responding can induce spurious associations between task behavior and symptom measures , 2021 .

[3]  D. Terry,et al.  Normative Reference Values, Reliability, and Item-Level Symptom Endorsement for the PROMIS® v2.0 Cognitive Function-Short Forms 4a, 6a and 8a. , 2021, Archives of Clinical Neuropsychology.

[4]  Jochen Ranger,et al.  Effects of Motivation on the Accuracy and Speed of Responding in Tests: The Speed-Accuracy Tradeoff Revisited , 2021 .

[5]  Gilles E. Gignac,et al.  Maximum effort may not be required for valid intelligence test score interpretations , 2019, Intelligence.

[6]  Blanca Piera Pi-Sunyer,et al.  The matrix reasoning item bank (MaRs-IB): novel, open-access abstract reasoning items for adolescents and adults , 2018, Royal Society Open Science.

[7]  Kinga Morsanyi,et al.  Applying Item Response Theory to Develop a Shortened Version of the Need for Cognition Scale , 2018, Advances in cognitive psychology.

[8]  M. Botvinick,et al.  Mental labour , 2018, Nature Human Behaviour.

[9]  C. Gillan,et al.  Psychiatric Symptom Dimensions Are Associated With Dissociable Shifts in Metacognition but Not Task Performance , 2018, Biological Psychiatry.

[10]  Gilles E. Gignac A moderate financial incentive can increase effort, but not intelligence test performance in adult volunteers , 2018, British journal of psychology.

[11]  Brooke E. Magnus The Basics of Item Response Theory Using R , 2018, Measurement: Interdisciplinary Research and Perspectives.

[12]  W. A. Nicewander Conditional Reliability Coefficients for Test Scores , 2018, Psychological methods.

[13]  Won‐Chan Lee,et al.  IRT Linking and Equating , 2018 .

[14]  Sophia Rabe-Hesketh,et al.  Bayesian Comparison of Latent Variable Models: Conditional Versus Marginal Likelihoods , 2018, Psychometrika.

[15]  Jonathan P. Weeks,et al.  Using Response Time Data to Reduce Testing Time in Cognitive Tests , 2017, Psychological assessment.

[16]  Yong Luo,et al.  Performances of LOO and WAIC as IRT Model Selection Methods , 2017 .

[17]  Ying Cheng,et al.  Item Cloning Variation and the Impact on the Parameters of Response Models , 2017, Psychometrika.

[18]  Jiqiang Guo,et al.  Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.

[19]  S. Blakemore,et al.  A Window of Opportunity for Cognitive Training in Adolescence , 2016, Psychological science.

[20]  Robert J. Mislevy,et al.  Bayesian Psychometric Modeling , 2016 .

[21]  N. Daw,et al.  Characterizing a psychiatric symptom dimension related to deficits in goal-directed control , 2016, eLife.

[22]  Florian Domnick,et al.  Intelligence and school grades: A meta-analysis , 2015 .

[23]  Gilles E. Gignac Raven's is not a pure measure of general intelligence: Implications for g factor theory and the brief measurement of g , 2015 .

[24]  Aki Vehtari,et al.  Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC , 2015, Statistics and Computing.

[25]  Roy Levy,et al.  A Standardized Generalized Dimensionality Discrepancy Measure and a Standardized Model‐Based Covariance for Dimensionality Assessment for Multidimensional Models , 2015 .

[26]  Joshua de Leeuw,et al.  jsPsych: A JavaScript library for creating behavioral experiments in a Web browser , 2014, Behavior Research Methods.

[27]  Jochen Ranger,et al.  An accumulator model for responses and response times in tests based on the proportional hazards model. , 2014, The British journal of mathematical and statistical psychology.

[28]  Richard P. Heitz,et al.  The speed-accuracy tradeoff: history, physiology, methodology, and behavior , 2014, Front. Neurosci..

[29]  Ricardo Primi,et al.  Developing a fluid intelligence scale through a combination of Rasch modeling and cognitive psychology. , 2014, Psychological assessment.

[30]  William Revelle,et al.  The international cognitive ability resource: Development and initial validation of a public-domain measure , 2014 .

[31]  John O. Willis,et al.  Wechsler Abbreviated Scale of Intelligence , 2014 .

[32]  John O. Willis,et al.  Wechsler Adult Intelligence Scale–Fourth Edition , 2014 .

[33]  J. Jolles,et al.  The Shortened Raven Standard Progressive Matrices , 2013, Assessment.

[34]  S. Galli,et al.  Item Response Theory analysis and Differential Item Functioning across age, gender and country of a short form of the Advanced Progressive Matrices. , 2012 .

[35]  R. Gur,et al.  Development of Abbreviated Nine-Item Forms of the Raven’s Standard Progressive Matrices Test , 2012, Assessment.

[36]  S. Galli,et al.  Using the Advanced Progressive Matrices (Set I) to assess fluid ability in a short time frame: an item response theory-based analysis. , 2012, Psychological assessment.

[37]  Rolf Loeber,et al.  Role of test motivation in intelligence testing , 2011, Proceedings of the National Academy of Sciences.

[38]  Cornelis A.W. Glas,et al.  Modeling Rule-Based Item Generation , 2011 .

[39]  L. S. Feldt,et al.  The estimation of the IRT reliability coefficient and its lower and upper bounds, with comparisons to CTT reliability statistics , 2010 .

[40]  De Ayala,et al.  The Theory and Practice of Item Response Theory , 2008 .

[41]  Douglas K. Detterman,et al.  ACT and General Cognitive Ability. , 2008 .

[42]  P. Ubel,et al.  Measuring Numeracy without a Math Test: Development of the Subjective Numeracy Scale , 2007, Medical decision making : an international journal of the Society for Medical Decision Making.

[43]  Charles E. McCulloch,et al.  Separating between‐ and within‐cluster covariate effects by using conditional and partitioning methods , 2006 .

[44]  Hal S. Stern,et al.  Posterior Predictive Assessment of Item Response Theory Models , 2006 .

[45]  Willem J. van der Linden,et al.  Linear Models for Optimal Test Design , 2005 .

[46]  R. Engle,et al.  The generality of working memory capacity: a latent-variable approach to verbal and visuospatial memory span and reasoning. , 2004, Journal of experimental psychology. General.

[47]  D. Detterman,et al.  Scholastic Assessment or g? , 2004, Psychological science.

[48]  Willem J. van der Linden,et al.  Optimal Assembly of Psychological and Educational Tests , 1998 .

[49]  S. Embretson A cognitive design system approach to generating valid tests : Application to abstract reasoning , 1998 .

[50]  M. F. Luce,et al.  When time is money : Decision behavior under opportunity-cost time pressure , 1996 .

[51]  M. W. Molen,et al.  Error analysis of raven test performance , 1994 .

[52]  M A Just,et al.  From the SelectedWorks of Marcel Adam Just 1990 What one intelligence test measures : A theoretical account of the processing in the Raven Progressive Matrices Test , 2016 .

[53]  C. E. Bethell-Fox,et al.  Adaptive reasoning: Componential and eye movement analysis of geometric analogy performance ☆ , 1984 .

[54]  R. Glaser,et al.  Components of geometric analogy solution , 1980, Cognitive Psychology.

[55]  K. Ng Applicability Of Classical Test Score Models To Repeated Performances On The Same Test1 , 1974 .

[56]  Túlio A. M. Toffolo,et al.  Mixed Integer Linear Programming with Python , 2020 .

[57]  P. Boeck,et al.  Additive Multilevel Item Structure Models with Random Residuals: Item Modeling for Explanation and Item Generation , 2014, Psychometrika.

[58]  Kyung T. Han,et al.  Fixing the c Parameter in the Three-Parameter Logistic Model , 2012 .

[59]  Nick Sofroniou,et al.  Item response theory , 2011 .

[60]  Skipper Seabold,et al.  Statsmodels: Econometric and Statistical Modeling with Python , 2010, SciPy.

[61]  Claus H. Carstensen,et al.  Explanatory Item Response Models: A Brief Introduction , 2008 .

[62]  Deniz Senturk-Doganaksoy,et al.  Explanatory Item Response Models: A Generalized Linear and Nonlinear Approach , 2006, Technometrics.

[63]  R. Engle,et al.  Working memory capacity and fluid abilities: Examining the correlation between Operation Span and Raven , 2005 .

[64]  Sun-Joo Cho,et al.  Explanatory Item Response Models , 2004 .

[65]  Douglas A. Bors,et al.  The effect of practice on Raven's Advanced Progressive Matrices , 2003 .

[66]  Ricardo Primi,et al.  Complexity of Geometric Inductive Reasoning Tasks: Contribution to the Understanding of Fluid Intelligence. , 2001 .

[67]  Xiao-Li Meng,et al.  POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .