Resilience and coevolution of preferential interdependent networks

We propose a new model for the study of resilience of coevolving multiplex scale-free networks. Our network model, called preferential interdependent networks, is a novel continuum over scale-free networks parameterized by their correlation ρ,0≤ρ≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho , 0 \le \rho \le 1$$\end{document}. Our failure and recovery model ties the propensity of a node, both to fail and to assist in recovery, to its importance. We show, analytically, that our network model can achieve any γ,2≤γ≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma , 2 \le \gamma \le 3$$\end{document} for the exponent of the power law of the degree distribution; this is superior to existing multiplex models and allows us better fidelity in representing real-world networks. Our failure and recovery model is also a departure from the much studied cascading error model based on the giant component; it allows for surviving important nodes to send assistance to the damaged nodes to enable their recovery. This better reflects the reality of recovery in man-made networks such as social networks and infrastructure networks. Our main finding, based on simulations, is that resilient preferential interdependent networks are those in which the layers are neither completely correlated (ρ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho = 1$$\end{document}) nor completely uncorrelated (ρ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho =0$$\end{document}) but instead semi-correlated (ρ≈0.1-0.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho \approx 0.1 - 0.3$$\end{document}). This finding is consistent with the real-world experience where complex man-made networks typically bounce back quickly from stress. In an attempt to explain our intriguing empirical discovery, we present an argument for why semi-correlated multiplex networks can be the most resilient. Our argument can be seen as an explanation of plausibility or as an incomplete mathematical proof subject to certain technical conjectures that we make explicit.

[1]  Reuven Cohen,et al.  Percolation in Interdependent and Interconnected Networks: Abrupt Change from Second to First Order Transition , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[3]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[4]  I. Linkov,et al.  Integrating Risk and Resilience Approaches to Catastrophe Management in Engineering Systems , 2013, Risk analysis : an official publication of the Society for Risk Analysis.

[5]  N. Wormald The differential equation method for random graph processes and greedy algorithms , 1999 .

[6]  Béla Bollobás,et al.  Random Graphs , 1985 .

[7]  James P. Peerenboom,et al.  Identifying, understanding, and analyzing critical infrastructure interdependencies , 2001 .

[8]  Len Fisher,et al.  Disaster responses: More than 70 ways to show resilience , 2015, Nature.

[9]  Z. Wang,et al.  The structure and dynamics of multilayer networks , 2014, Physics Reports.

[10]  Vito Latora,et al.  The new challenges of multiplex networks: Measures and models , 2016, The European Physical Journal Special Topics.

[11]  Jonathan LaCour Done With Facebook , 2018 .

[12]  Harry Eugene Stanley,et al.  Catastrophic cascade of failures in interdependent networks , 2009, Nature.

[13]  Auroop R. Ganguly,et al.  Resilience Strategies for Interdependent Multiscale Lifeline Infrastructure Networks , 2017 .

[14]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[15]  Patrick Thiran,et al.  Layered complex networks. , 2006, Physical review letters.

[16]  Ravi Sundaram,et al.  Resilience and the Coevolution of Interdependent Multiplex Networks , 2018, 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[17]  Naghmeh Momeni,et al.  Growing Multiplex Networks with Arbitrary Number of Layers , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Auroop R. Ganguly,et al.  Climate Extremes and Informing Adaptation , 2017, Encyclopedia of GIS.

[19]  Linyuan Lu,et al.  Complex Graphs and Networks (CBMS Regional Conference Series in Mathematics) , 2006 .

[20]  Anbupalam Thalamuthu,et al.  The Prevalence of Mild Cognitive Impairment in Diverse Geographical and Ethnocultural Regions: The COSMIC Collaboration , 2015, PloS one.

[21]  Min Ouyang,et al.  Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis , 2015, Reliab. Eng. Syst. Saf..

[22]  Byungjoon Min,et al.  Correlated network of networks enhances robustness against catastrophic failures , 2018, PloS one.

[23]  Prithwish Basu,et al.  Multiplex networks: A generative model and algorithmic complexity , 2015, 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[24]  Paul Erdös,et al.  On random graphs, I , 1959 .

[25]  Min Ouyang,et al.  A three-stage resilience analysis framework for urban infrastructure systems , 2012 .

[26]  A. Frieze,et al.  Introduction to Random Graphs , 2016 .

[27]  Leonardo Dueñas-Osorio,et al.  Cascading failures in complex infrastructure systems , 2009 .

[28]  Jung Yeol Kim,et al.  Coevolution and correlated multiplexity in multiplex networks , 2013, Physical review letters.

[29]  Béla Bollobás,et al.  Mathematical results on scale‐free random graphs , 2005 .

[30]  Massimo Marchiori,et al.  Error and attacktolerance of complex network s , 2004 .

[31]  A. Arenas,et al.  Mathematical Formulation of Multilayer Networks , 2013, 1307.4977.

[32]  A. Ganguly,et al.  Network Science Based Quantification of Resilience Demonstrated on the Indian Railways Network , 2015, PloS one.

[33]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.