Superposition-Enhanced Estimation of Optimal Temperature Spacings for Parallel Tempering Simulations

Effective parallel tempering simulations rely crucially on a properly chosen sequence of temperatures. While it is desirable to achieve a uniform exchange acceptance rate across neighboring replicas, finding a set of temperatures that achieves this end is often a difficult task, in particular for systems undergoing phase transitions. Here we present a method for determination of optimal replica spacings, which is based upon knowledge of local minima in the potential energy landscape. Working within the harmonic superposition approximation, we derive an analytic expression for the parallel tempering acceptance rate as a function of the replica temperatures. For a particular system and a given database of minima, we show how this expression can be used to determine optimal temperatures that achieve a desired uniform acceptance rate. We test our strategy for two atomic clusters that exhibit broken ergodicity, demonstrating that our method achieves uniform acceptance as well as significant efficiency gains.

[1]  D. van der Spoel,et al.  A temperature predictor for parallel tempering simulations. , 2008, Physical chemistry chemical physics : PCCP.

[2]  A. Voter,et al.  Smart Darting Monte Carlo , 2001 .

[3]  J. Doye,et al.  THE DOUBLE-FUNNEL ENERGY LANDSCAPE OF THE 38-ATOM LENNARD-JONES CLUSTER , 1998, cond-mat/9808265.

[4]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[5]  S. Rick,et al.  Replica exchange with dynamical scaling. , 2007, The Journal of chemical physics.

[6]  Paul G. Mezey,et al.  Potential Energy Hypersurfaces , 1987 .

[7]  Vladimir A Mandelshtam,et al.  Solid-solid structural transformations in Lennard-Jones clusters: accurate simulations versus the harmonic superposition approximation. , 2007, The journal of physical chemistry. A.

[8]  Vladimir A Mandelshtam,et al.  Low-temperature structural transitions: circumventing the broken-ergodicity problem. , 2007, Physical review letters.

[9]  Rare-event sampling: occupation-based performance measures for parallel tempering and infinite swapping Monte Carlo methods. , 2012, The Journal of chemical physics.

[10]  David J Wales,et al.  Symmetrisation schemes for global optimisation of atomic clusters. , 2013, Physical chemistry chemical physics : PCCP.

[11]  David A. Kofke,et al.  ARTICLES On the acceptance probability of replica-exchange Monte Carlo trials , 2002 .

[12]  H. Scheraga,et al.  Global optimization of clusters, crystals, and biomolecules. , 1999, Science.

[13]  J. Straub,et al.  Replica exchange statistical temperature molecular dynamics algorithm. , 2012, The journal of physical chemistry. B.

[14]  J. Straub,et al.  Statistical-temperature Monte Carlo and molecular dynamics algorithms. , 2006, Physical review letters.

[15]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[16]  P. Frantsuzov,et al.  Size-temperature phase diagram for small Lennard-Jones clusters. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  H. Scheraga,et al.  Monte Carlo-minimization approach to the multiple-minima problem in protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Michael W Deem,et al.  Parallel tempering: theory, applications, and new perspectives. , 2005, Physical chemistry chemical physics : PCCP.

[19]  W. Nadler,et al.  Optimized explicit-solvent replica exchange molecular dynamics from scratch. , 2008, The journal of physical chemistry. B.

[20]  J. D. de Pablo,et al.  Optimal allocation of replicas in parallel tempering simulations. , 2005, The Journal of chemical physics.

[21]  J. Doye,et al.  Thermodynamics and the Global Optimization of Lennard-Jones clusters , 1998, cond-mat/9806020.

[22]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[23]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[24]  Sanghyun Park,et al.  Comparison of the serial and parallel algorithms of generalized ensemble simulations: an analytical approach. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  K. Sanbonmatsu,et al.  Structure of Met‐enkephalin in explicit aqueous solution using replica exchange molecular dynamics , 2002, Proteins.

[26]  H. G. Petersen,et al.  Error estimates on averages of correlated data , 1989 .

[27]  A. Schug,et al.  All‐atom folding of the three‐helix HIV accessory protein with an adaptive parallel tempering method , 2004, Proteins.

[28]  D. Kofke Erratum: "On the acceptance probability of replica-exchange Monte Carlo trials" [J. Chem. Phys. 117, 6911 (2002)] , 2004 .

[29]  David J. Wales,et al.  Surveying a complex potential energy landscape: Overcoming broken ergodicity using basin-sampling , 2013 .

[30]  Paul Tavan,et al.  Optimal temperature ladders in replica exchange simulations , 2009 .

[31]  John E Straub,et al.  Replica exchange statistical temperature Monte Carlo. , 2009, The Journal of chemical physics.

[32]  D. Kofke,et al.  Selection of temperature intervals for parallel-tempering simulations. , 2005, The Journal of chemical physics.

[33]  Wang,et al.  Replica Monte Carlo simulation of spin glasses. , 1986, Physical review letters.

[34]  Ulrich H E Hansmann,et al.  Generalized ensemble and tempering simulations: a unified view. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  B. Berne,et al.  Smart walking: A new method for Boltzmann sampling of protein conformations , 1997 .

[36]  Jean Charles Gilbert,et al.  Numerical Optimization: Theoretical and Practical Aspects , 2003 .