Besides Purkinje cells and granule neurons: an appraisal of the cell biology of the interneurons of the cerebellar cortex

Ever since the groundbreaking work of Ramon y Cajal, the cerebellar cortex has been recognized as one of the most regularly structured and wired parts of the brain formed by a rather limited set of distinct cells. Its rather protracted course of development, which persists well into postnatal life, the availability of multiple natural mutants, and, more recently, the availability of distinct molecular genetic tools to identify and manipulate discrete cell types have suggested the cerebellar cortex as an excellent model to understand the formation and working of the central nervous system. However, the formulation of a unifying model of cerebellar function has so far proven to be a most cantankerous problem, not least because our understanding of the internal cerebellar cortical circuitry is clearly spotty. Recent research has highlighted the fact that cerebellar cortical interneurons are a quite more diverse and heterogeneous class of cells than generally appreciated, and have provided novel insights into the mechanisms that underpin the development and histogenetic integration of these cells. Here, we provide a short overview of cerebellar cortical interneuron diversity, and we summarize some recent results that are hoped to provide a primer on current understanding of cerebellar biology.

[1]  Lei Zhang,et al.  Generation of Cerebellar Interneurons from Dividing Progenitors in White Matter , 1996, Neuron.

[2]  S. Hockfield,et al.  A Family of Activity-Dependent Neuronal Cell-Surface Chondroitin Sulfate Proteoglycans in Cat Visual Cortex , 1997, The Journal of Neuroscience.

[3]  K. Ezure,et al.  Overall distribution of GLYT2 mRNA-containing versus GAD67 mRNA-containing neurons and colocalization of both mRNAs in midbrain, pons, and cerebellum in rats , 2004, Neuroscience Research.

[4]  A. Joyner,et al.  Cell Behaviors and Genetic Lineages of the Mesencephalon and Rhombomere 1 , 2004, Neuron.

[5]  C. Giménez,et al.  The Role of N-Glycosylation in Transport to the Plasma Membrane and Sorting of the Neuronal Glycine Transporter GLYT2* , 2001, The Journal of Biological Chemistry.

[6]  Marc E. R. Hallonet,et al.  Tracing Neuroepithelial Cells of the Mesencephalic and Metencephalic Alar Plates During Cerebellar Ontogeny in Quail – chick Chimaeras , 1993, The European journal of neuroscience.

[7]  E. Mugnaini,et al.  Time of origin of unipolar brush cells in the rat cerebellum as observed by prenatal bromodeoxyuridine labeling , 2004, Neuroscience.

[8]  S. Dieudonné,et al.  IPSC Kinetics at Identified GABAergic and Mixed GABAergic and Glycinergic Synapses onto Cerebellar Golgi Cells , 2001, The Journal of Neuroscience.

[9]  Carol Dudley,et al.  Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[10]  A. Joyner,et al.  Changing Requirements for Gbx2 in Development of the Cerebellum and Maintenance of the Mid/Hindbrain Organizer , 2002, Neuron.

[11]  C. Sotelo Cerebellar synaptogenesis: what we can learn from mutant mice. , 1990, The Journal of experimental biology.

[12]  H. Yamasaki,et al.  Bystander effect in herpes simplex virus-thymidine kinase/ganciclovir cancer gene therapy: role of gap-junctional intercellular communication. , 2000, Cancer research.

[13]  H. Sitte,et al.  Signal-dependent export of GABA transporter 1 from the ER-Golgi intermediate compartment is specified by a C-terminal motif , 2008, Journal of Cell Science.

[14]  D. Copenhagen,et al.  Vesicular Glutamate Transporters 1 and 2 Target to Functionally Distinct Synaptic Release Sites , 2004, Science.

[15]  F. Rossi,et al.  Different Types of Cerebellar GABAergic Interneurons Originate from a Common Pool of Multipotent Progenitor Cells , 2006, The Journal of Neuroscience.

[16]  M. Ross,et al.  Selective cortical interneuron and GABA deficits in cyclin D2-null mice , 2007, Development.

[17]  K. Riabowol,et al.  Increased Expression of Cyclin D2 during Multiple States of Growth Arrest in Primary and Established Cells , 1998, Molecular and Cellular Biology.

[18]  K. Schilling,et al.  Brain-derived neurotrophic factor modulates dendritic morphology of cerebellar basket and stellate cells: an in vitro study , 2000, Neuroscience.

[19]  S. Mcconnell,et al.  Cell cycle dependence of laminar determination in developing neocortex , 1991 .

[20]  S. Mcconnell,et al.  Progressive restriction in fate potential by neural progenitors during cerebral cortical development. , 2000, Development.

[21]  J. Rutka,et al.  Molecular pathogenesis of childhood brain tumors , 2004, Journal of Neuro-Oncology.

[22]  J. Hámori,et al.  Calretinin-immunoreactive unipolar brush cells in the developing human cerebellum , 2005, International Journal of Developmental Neuroscience.

[23]  H. Braak On the intermediate cells of lugaro within the cerebellar cortex of man , 1974, Cell and Tissue Research.

[24]  M. Glickstein,et al.  The anatomy of the cerebellum , 1998, Trends in Neurosciences.

[25]  Ramón y Cajal,et al.  Histologie du système nerveux de l'homme & des vertébrés , 1909 .

[26]  A. Guidotti,et al.  Moving up or moving down? Malpositioned cerebellar unipolar brush cells in reeler mouse , 2005, Neuroscience.

[27]  J. Goldman,et al.  Developmental fates and migratory pathways of dividing progenitors in the postnatal rat cerebellum , 1996, The Journal of comparative neurology.

[28]  K. Sasaki,et al.  Electrophysiological study on the postnatal development of neuronal mechanisms in the rat cerebellar cortex , 1976, Brain Research.

[29]  K. Schilling,et al.  Expression of classical cadherins in the cerebellar anlage: Quantitative and functional aspects , 2006, Molecular and Cellular Neuroscience.

[30]  H. Axelrad,et al.  Granular layer collaterals of the unipolar brush cell axon display rosette-like excrescences. A Golgi study in the rat cerebellar cortex , 1994, Neuroscience Letters.

[31]  Friedrich Paulsen,et al.  Ptf1a is essential for the differentiation of GABAergic and glycinergic amacrine cells and horizontal cells in the mouse retina , 2007, Development.

[32]  M. Ross,et al.  Cerebellar histogenesis is disturbed in mice lacking cyclin D2. , 1999, Development.

[33]  D. Rowitch,et al.  Development of mice expressing a single D-type cyclin. , 2002, Genes & development.

[34]  E. Mugnaini,et al.  Postnatal differentiation of unipolar brush cells and mossy fiber-unipolar brush cell synapses in rat cerebellum , 2001, Neuroscience.

[35]  K. Schilling,et al.  Postnatal development of the murine cerebellar cortex: formation and early dispersal of basket, stellate and Golgi neurons , 2006, The European journal of neuroscience.

[36]  E. Mugnaini,et al.  The unipolar brush cell: A neglected neuron of the mammalian cerebellar cortex , 1994, The Journal of comparative neurology.

[37]  L. Puelles,et al.  Retrospective clonal analysis of the cerebellum using genetic laacZ/lacZ mouse mosaics. , 1997, Development.

[38]  E. Mugnaini,et al.  Unipolar brush cells develop a set of characteristic features in primary cerebellar cultures , 2000, Journal of neurocytology.

[39]  S. Fujita QUANTITATIVE ANALYSIS OF CELL PROLIFERATION AND DIFFERENTIATION IN THE CORTEX OF THE POSTNATAL MOUSE CEREBELLUM , 1967, The Journal of cell biology.

[40]  M. Caplan,et al.  Identification of Sorting Determinants in the C-terminal Cytoplasmic Tails of the γ-Aminobutyric Acid Transporters GAT-2 and GAT-3* , 1998, The Journal of Biological Chemistry.

[41]  R. Shigemoto,et al.  Morphological and neurochemical differentiation of large granular layer interneurons in the adult rat cerebellum , 2001, Neuroscience.

[42]  R. Hawkes,et al.  Comparative analysis of proneural gene expression in the embryonic cerebellum , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[43]  S. Dieudonné Glycinergic synaptic currents in Golgi cells of the rat cerebellum. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Y. Yanagawa,et al.  Development of stellate and basket cells and their apoptosis in mouse cerebellar cortex , 2004, Neuroscience Research.

[45]  J. Goldman,et al.  Potential of progenitors from postnatal cerebellar neuroepithelium and white matter: lineage specified vs. multipotent fate , 2004, Molecular and Cellular Neuroscience.

[46]  S. Hockfield,et al.  Aggrecan Glycoforms Contribute to the Molecular Heterogeneity of Perineuronal Nets , 2002, The Journal of Neuroscience.

[47]  Masahiko Watanabe,et al.  Ptf1a, a bHLH Transcriptional Gene, Defines GABAergic Neuronal Fates in Cerebellum , 2005, Neuron.

[48]  F. Rossi,et al.  Development of Cerebellar GABAergic Interneurons: Origin and Shaping of the “Minibrain” Local Connections , 2008, The Cerebellum.

[49]  D. Jacobowitz,et al.  The unipolar brush cells of the rat cerebellar cortex and cochlear nucleus are calretinin-positive: a study by light and electron microscopic immunocytochemistry , 1994, Anatomy and Embryology.

[50]  C. Vorhees,et al.  Abnormal neurodevelopment, neurosignaling and behaviour in Npas3‐deficient mice , 2005, The European journal of neuroscience.

[51]  D Jaarsma,et al.  The unipolar brush cells of the mammalian cerebellum and cochlear nucleus: cytology and microcircuitry. , 1997, Progress in brain research.

[52]  S. Palay,et al.  Cerebellar Cortex: Cytology and Organization , 1974 .

[53]  S. Dieudonné,et al.  Serotonin-Driven Long-Range Inhibitory Connections in the Cerebellar Cortex , 2000, The Journal of Neuroscience.

[54]  N. Slater,et al.  Unipolar brush cells form a glutamatergic projection system within the mouse cerebellar cortex , 2001, The Journal of comparative neurology.

[55]  K. Schilling,et al.  Morphological development and neurochemical differentiation of cerebellar inhibitory interneurons in microexplant cultures , 2003, Neuroscience.

[56]  K. Herrup,et al.  Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. , 1999, Journal of neurobiology.

[57]  E. Mugnaini,et al.  Extraordinary synapses of the unipolar brush cell: An electron microscopic study in the rat cerebellum , 1994, Synapse.

[58]  E. Mugnaini,et al.  Vesicular glutamate transporters VGLUT1 and VGLUT2 define two subsets of unipolar brush cells in organotypic cultures of mouse vestibulocerebellum , 2003, Neuroscience.

[59]  M. Weller,et al.  Migratory neural stem cells for improved thymidine kinase-based gene therapy of malignant gliomas. , 2005, Biochemical and biophysical research communications.

[60]  S. Hockfield,et al.  Molecular identification of the lugaro cell in the cat cerebellar cortex , 1990, The Journal of comparative neurology.

[61]  I. Blumcke,et al.  Coexpression of connexin45 and -32 in oligodendrocytes of rat brain , 1997, Journal of neurocytology.

[62]  S. Quake,et al.  Number, Density, and Surface/Cytoplasmic Distribution of GABA Transporters at Presynaptic Structures of Knock-In Mice Carrying GABA Transporter Subtype 1–Green Fluorescent Protein Fusions , 2002, The Journal of Neuroscience.

[63]  H. Axelrad,et al.  Morphology of the Golgi‐impregnated lugaro cell in the rat cerebellar cortex: A reappraisal with a description of its axon , 1996, The Journal of comparative neurology.

[64]  L. Roncali,et al.  Glutamic acid decarboxylase immunoreactive large neuron types in the granular layer of the human cerebellar cortex , 2004, Anatomy and Embryology.

[65]  D. Stern,et al.  Neural and mammary gland defects in ErbB4 knockout mice genetically rescued from embryonic lethality , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[66]  M. Garwicz,et al.  Anatomical and physiological foundations of cerebellar information processing , 2005, Nature Reviews Neuroscience.

[67]  Eva Syková,et al.  Department of Neuroscience , 2009 .

[68]  F. Edwards,et al.  Serotonin Drives a Novel GABAergic Synaptic Current Recorded in Rat Cerebellar Purkinje Cells: A Lugaro Cell to Purkinje Cell Synapse , 2003, The Journal of Neuroscience.

[69]  A. Hendrickson,et al.  Purkinje cell axon collaterals terminate on Cat-301+ neurons in Macaca monkey cerebellum , 2007, Neuroscience.

[70]  E. Boyden,et al.  Cerebellum-dependent learning: the role of multiple plasticity mechanisms. , 2004, Annual review of neuroscience.

[71]  H. Axelrad,et al.  Extending the cerebellar Lugaro cell class , 2002, Neuroscience.

[72]  D. Rossi,et al.  Properties of transmission at a giant glutamatergic synapse in cerebellum: the mossy fiber-unipolar brush cell synapse. , 1995, Journal of neurophysiology.

[73]  P. Rakić,et al.  Mechanisms of cortical development: a view from mutations in mice. , 1978, Annual review of neuroscience.

[74]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[75]  J. Morgan,et al.  Identification of candidate Purkinje cell-specific markers by gene expression profiling in wild-type and pcd(3J) mice. , 2004, Brain research. Molecular brain research.

[76]  J. Storm-Mathisen,et al.  Glycine-like immunoreactivity in the cerebellum of rat and Senegalese baboon, Papio papio: a comparison with the distribution of GABA-like immunoreactivity and with [3H]glycine and [3H]GABA uptake , 2004, Experimental Brain Research.

[77]  Matthew Grist,et al.  Spatial Genetic Patterning of the Embryonic Neuroepithelium Generates GABAergic Interneuron Diversity in the Adult Cortex , 2007, The Journal of Neuroscience.

[78]  K. Schilling,et al.  Developmental and cell type‐specific expression of the neuronal marker NeuN in the murine cerebellum , 2003, Journal of neuroscience research.

[79]  H. Korn,et al.  gamma-Aminobutyric acid-containing terminals can be apposed to glycine receptors at central synapses , 1987, The Journal of cell biology.

[80]  K. Schilling,et al.  The SDF‐1/CXCR4 pathway and the development of the cerebellar system , 2005, The European journal of neuroscience.

[81]  D. Ellison,et al.  The origins of medulloblastoma subtypes. , 2008, Annual review of pathology.

[82]  H. Zhang,et al.  Neurons Produce a Neuronal Cell Surface-Associated Chondroitin Sulfate Proteoglycan , 1998, The Journal of Neuroscience.

[83]  R. Sidman,et al.  An autoradiographic analysis of histogenesis in the mouse cerebellum. , 1961, Experimental neurology.

[84]  E. Mugnaini,et al.  Unusual neurofilament composition in cerebellar unipolar brush neurons , 1993, Journal of neurocytology.

[85]  Dean E. Hillman,et al.  Plasticity of the parallel Fiber-Purkinje cell synapse by spine takeover and new synapse formation in the adult rat , 1982, Brain Research.

[86]  H. Namba,et al.  Potent Bystander Effect in Suicide Gene Therapy Using Neural Stem Cells Transduced with Herpes Simplex Virus Thymidine Kinase Gene , 2006, Oncology.

[87]  K. Schilling,et al.  Characterization of the neuronal marker NeuN as a multiply phosphorylated antigen with discrete subcellular localization , 2005, Journal of neuroscience research.

[88]  T. Görcs,et al.  Postnatal development of unipolar brush cells in the cerebellar cortex of cat , 2000, Journal of neuroscience research.

[89]  C. Sotelo,et al.  Cellular and genetic regulation of the development of the cerebellar system , 2004, Progress in Neurobiology.

[90]  J. Gerdes,et al.  The differentiation of cerebellar interneurons is independent of their mitotic history , 1999, Neuroscience.

[91]  Karl Schilling,et al.  From zebra stripes to postal zones: deciphering patterns of gene expression in the cerebellum , 1998, Trends in Neurosciences.

[92]  F. Real,et al.  Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression , 2007, Proceedings of the National Academy of Sciences.

[93]  J. Goldman,et al.  Progenitors in the postnatal cerebellar white matter are antigenically heterogeneous , 2002, The Journal of comparative neurology.

[94]  K. Osen,et al.  The Vesicular GABA Transporter, VGAT, Localizes to Synaptic Vesicles in Sets of Glycinergic as Well as GABAergic Neurons , 1998, The Journal of Neuroscience.

[95]  Sonja M. Wojcik,et al.  A Shared Vesicular Carrier Allows Synaptic Corelease of GABA and Glycine , 2006, Neuron.

[96]  Masao Ito Control of mental activities by internal models in the cerebellum , 2008, Nature Reviews Neuroscience.

[97]  J. Deitmer,et al.  Purinergic modulation of synaptic input to Purkinje neurons in rat cerebellar brain slices , 2004, The European journal of neuroscience.

[98]  J M Bower,et al.  Quantitative Golgi study of the rat cerebellar molecular layer interneurons using principal component analysis , 1998, The Journal of comparative neurology.

[99]  Wolfgang Alt,et al.  Image analysis of time-lapse movies—A precision control guided approach to correct motion artefacts , 2008, Journal of Neuroscience Methods.

[100]  T. Curran,et al.  BGEM: An In Situ Hybridization Database of Gene Expression in the Embryonic and Adult Mouse Nervous System , 2006, PLoS biology.

[101]  F. Saitow,et al.  Metabotropic P2Y Purinoceptor-Mediated Presynaptic and Postsynaptic Enhancement of Cerebellar GABAergic Transmission , 2005, The Journal of Neuroscience.

[102]  Mnh,et al.  Histologie du Système Nerveux de Lʼhomme et des Vertébrés , 1998 .

[103]  S. R. Cajal Textura del Sistema Nervioso del Hombre y de los Vertebrados, 1899–1904 , 2019 .

[104]  Dan Goldowitz,et al.  The cells and molecules that make a cerebellum , 1998, Trends in Neurosciences.

[105]  Erik De Schutter,et al.  Unraveling the cerebellar cortex: Cytology and cellular physiology of large-sized interneurons in the granular layer , 2008, The Cerebellum.

[106]  D E Hillman,et al.  The primate cerebellar cortex: a Golgi and electron microscopic study. , 1967, Progress in brain research.

[107]  D. Steindler,et al.  Compartmentation of the reeler cerebellum: Segregation and overlap of spinocerebellar and secondary vestibulocerebellar fibers and their target cells , 2005, Neuroscience.

[108]  A. Aguzzi,et al.  Deregulated expression of PAX5 in medulloblastoma. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[109]  G. Dugué,et al.  Target-Dependent Use of Coreleased Inhibitory Transmitters at Central Synapses , 2005, The Journal of Neuroscience.

[110]  E. Mugnaini,et al.  Enrichment of unipolar brush cell-like neurons in primary rat cerebellar cultures , 2001, Anatomy and Embryology.

[111]  Gregor Eichele,et al.  GenePaint.org: an atlas of gene expression patterns in the mouse embryo , 2004, Nucleic Acids Res..

[112]  E. Jorgensen,et al.  Vesicular Glutamate Transporter--Shooting Blanks , 2004, Science.

[113]  R. Shigemoto,et al.  Differential expression of calretinin and metabotropic glutamate receptor mGluR1α defines subsets of unipolar brush cells in mouse cerebellum , 2002, The Journal of comparative neurology.

[114]  J. Fritschy,et al.  Heterogeneity of glycinergic and gabaergic interneurons in the granule cell layer of mouse cerebellum , 2007, The Journal of comparative neurology.

[115]  G. Burnstock,et al.  Changes in expression of P2X purinoceptors in rat cerebellum during postnatal development. , 2005, Brain research. Developmental brain research.

[116]  Hiroyuki Nakamura,et al.  Brain-Derived Neurotrophic Factor Participates in Determination of Neuronal Laminar Fate in the Developing Mouse Cerebral Cortex , 2006, The Journal of Neuroscience.

[117]  Priscilla Wu,et al.  Ankyrin-Based Subcellular Gradient of Neurofascin, an Immunoglobulin Family Protein, Directs GABAergic Innervation at Purkinje Axon Initial Segment , 2004, Cell.

[118]  Caizhi Wu,et al.  Bergmann Glia and the Recognition Molecule CHL1 Organize GABAergic Axons and Direct Innervation of Purkinje Cell Dendrites , 2008, PLoS biology.

[119]  E. Mugnaini,et al.  Glutamate receptor subunits at mossy fiber‐unipolar brush cell synapses: Light and electron microscopic immunocytochemical study in cerebellar cortex of rat and cat , 1995, The Journal of comparative neurology.

[120]  K. Millen,et al.  Cerebellar development and disease , 2008, Current Opinion in Neurobiology.

[121]  S. Mcconnell,et al.  The determination of projection neuron identity in the developing cerebral cortex , 2008, Current Opinion in Neurobiology.

[122]  A. Hendrickson,et al.  Co-localization of glycine and gaba immunoreactivity in interneurons in Macaca monkey cerebellar cortex , 2006, Neuroscience.

[123]  H. Axelrad,et al.  The candelabrum cell: A new interneuron in the cerebellar cortex , 1994, The Journal of comparative neurology.

[124]  E. Borrelli,et al.  Oligodendrocyte ablation impairs cerebellum development , 2003, Development.

[125]  K. Willecke,et al.  Spatiotemporal transcription of connexin45 during brain development results in neuronal expression in adult mice , 2003, Neuroscience.

[126]  L. Eisenman,et al.  Developmental analysis of the external granular layer in the Meander tail mutant mouse: Do cerebellar microneurons have independent progenitors? , 1993, Developmental dynamics : an official publication of the American Association of Anatomists.

[127]  N. Slater,et al.  Unipolar brush cell: a potential feedforward excitatory interneuron of the cerebellum , 2000, Neuroscience.

[128]  J. Altman,et al.  Time of origin and distribution of a new cell type in the rat cerebellar cortex , 1977, Experimental Brain Research.

[129]  C. Englund,et al.  Unipolar Brush Cells of the Cerebellum Are Produced in the Rhombic Lip and Migrate through Developing White Matter , 2006, The Journal of Neuroscience.

[130]  P. Strata,et al.  Activity-Dependent Presynaptic and Postsynaptic Structural Plasticity in the Mature Cerebellum , 2007, The Journal of Neuroscience.

[131]  James V. Stone,et al.  Recurrent cerebellar architecture solves the motor-error problem , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[132]  H. Axelrad,et al.  Lugaro cells target basket and stellate cells in the cerebellar cortex , 1998, Neuroreport.