Sno2 Electron Transport Layer Modified by F/N-Doped Graphdiyne and in Situ Xrd and in Situ Xafs Exploration on its Effect on Perovskite Active Layer

[1]  D. Kuang,et al.  Room Temperature Fabrication of SnO2 Electrodes Enabling Barrier‐Free Electron Extraction for Efficient Flexible Perovskite Photovoltaics , 2022, Advanced Functional Materials.

[2]  K. Zhu,et al.  Advances in SnO2 for Efficient and Stable n–i–p Perovskite Solar Cells , 2022, Advanced materials.

[3]  G. Lu,et al.  Multi-cation hybrid stannic oxide electron transport layer for high-efficiency perovskite solar cells. , 2022, Journal of colloid and interface science.

[4]  Meihe Zhang,et al.  Annealing Free Tin Oxide Electron Transport Layers for Flexible Perovskite Solar Cells , 2022, Nano Energy.

[5]  Jihuai Wu,et al.  PbS/CdS heterojunction thin layer affords high-performance carbon-based all-inorganic solar cells , 2022, Nano Energy.

[6]  Jianping Zhang,et al.  Precursor Engineering of the Electron Transport Layer for Application in High‐Performance Perovskite Solar Cells , 2021, Advanced science.

[7]  Kwang Soo Kim,et al.  Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes , 2021, Nature.

[8]  Jihuai Wu,et al.  n-type absorber by Cd2+ doping achieves high-performance carbon-based CsPbIBr2 perovskite solar cells. , 2021, Journal of colloid and interface science.

[9]  Ritu Gupta,et al.  Chemical insights into electrophilic fluorination of SnO2 for photoelectrochemical applications , 2021, Journal of Materials Chemistry A.

[10]  Lirong Zheng,et al.  Different mechanisms of improving CH3NH3PbI3 perovskite solar cells brought by fluorinated or nitrogen doped graphdiyne , 2021, Nano Research.

[11]  Wentao Sun,et al.  Mobile Media Promotes Orientation of 2D/3D Hybrid Lead Halide Perovskite for Efficient Solar Cells. , 2021, ACS nano.

[12]  X. Ren,et al.  Antisolvent‐ and Annealing‐Free Deposition for Highly Stable Efficient Perovskite Solar Cells via Modified ZnO , 2021, Advanced science.

[13]  Xuanhua Li,et al.  Bi-Directional functionalization of urea-complexed SnO2 for efficient planar perovskite solar cells , 2021 .

[14]  Zhigang Zang,et al.  Interfacial defect passivation and stress release by multifunctional KPF6 modification for planar perovskite solar cells with enhanced efficiency and stability , 2021 .

[15]  Shangfeng Yang,et al.  In Situ Surface Fluorination of TiO2 Nanocrystals Reinforces Interface Binding of Perovskite Layer for Highly Efficient Solar Cells with Dramatically Enhanced Ultraviolet‐Light Stability , 2021, Advanced science.

[16]  Zhigang Zang,et al.  Multifunctional organic ammonium salt-modified SnO2nanoparticles toward efficient and stable planar perovskite solar cells , 2021 .

[17]  S. Cao,et al.  Rubidium Fluoride Modified SnO2 for Planar n‐i‐p Perovskite Solar Cells , 2021, Advanced Functional Materials.

[18]  Zhike Liu,et al.  Dual Passivation of Perovskite and SnO2 for High‐Efficiency MAPbI3 Perovskite Solar Cells , 2021, Advanced science.

[19]  Z. Tang,et al.  Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction , 2020, Nature Energy.

[20]  Andrew H. Proppe,et al.  Bifunctional Surface Engineering on SnO2 Reduces Energy Loss in Perovskite Solar Cells , 2020 .

[21]  Chenghao Bi,et al.  Stable CsPb1–xZnxI3 Colloidal Quantum Dots with Ultralow Density of Trap States for High-Performance Solar Cells , 2020 .

[22]  Qingliang Liao,et al.  Graphdiyne omnibearingly bridges the collocation between SnO2 and perovskite in planar solar cells. , 2020, Angewandte Chemie.

[23]  J. Bahadur,et al.  Rapid fabrication of perovskite solar cells through intense pulse light annealing of SnO2 and triple cation perovskite thin films , 2020 .

[24]  Jie Zhang,et al.  Gradient Energy Alignment Engineering for Planar Perovskite Solar Cells with Efficiency Over 23% , 2020, Advanced materials.

[25]  K. Graham,et al.  Influence of Surface Ligands on Energetics at FASnI3/C60 Interfaces and Their Impact on Photovoltaic Performance. , 2019, ACS applied materials & interfaces.

[26]  Xuexiang Han,et al.  Synthesis and Imaging of Biocompatible Graphdiyne Quantum Dots. , 2019, ACS applied materials & interfaces.

[27]  Y. Hao,et al.  Low‐Temperature Solution‐Processed ZnO Electron Transport Layer for Highly Efficient and Stable Planar Perovskite Solar Cells with Efficiency Over 20% , 2019, Solar RRL.

[28]  G. Fang,et al.  Achieving high open-circuit voltage on planar perovskite solar cells via chlorine doped tin oxide electron transport layers. , 2019, ACS applied materials & interfaces.

[29]  Bin Wang,et al.  Tuning Oxygen Vacancies in Ultrathin TiO2 Nanosheets to Boost Photocatalytic Nitrogen Fixation up to 700 nm , 2019, Advanced materials.

[30]  Zhongquan Wan,et al.  Bifunctional electron transporting layer/perovskite interface linker for highly efficient perovskite solar cells , 2019, Electrochimica Acta.

[31]  Jie Zhang,et al.  Charge Injection and Electrical Response in Low-Temperature SnO2-Based Efficient Perovskite Solar Cells. , 2018, ACS applied materials & interfaces.

[32]  Wei Huang,et al.  Enhancing Efficiency and Stability of Perovskite Solar Cells via a Self-Assembled Dopamine Interfacial Layer. , 2018, ACS applied materials & interfaces.

[33]  Qiang Sun,et al.  Highly Efficient Perovskite Solar Cells with Gradient Bilayer Electron Transport Materials. , 2018, Nano letters.

[34]  Junjie Ma,et al.  Fully High‐Temperature‐Processed SnO2 as Blocking Layer and Scaffold for Efficient, Stable, and Hysteresis‐Free Mesoporous Perovskite Solar Cells , 2018 .

[35]  Ullrich Steiner,et al.  A Ga-doped SnO2 mesoporous contact for UV stable highly efficient perovskite solar cells , 2018 .

[36]  Min Gyu Kim,et al.  Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells , 2017, Science.

[37]  Peng Zhang,et al.  Enhanced Performance of Planar Perovskite Solar Cells Using Low-Temperature Solution-Processed Al-Doped SnO2 as Electron Transport Layers , 2017, Nanoscale Research Letters.

[38]  Xingzhong Zhao,et al.  Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement , 2017 .

[39]  Z. Yin,et al.  Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells , 2016, Nature Energy.

[40]  Jae-Yup Kim,et al.  Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells , 2016 .

[41]  F. Giordano,et al.  Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells , 2016, Nature Communications.

[42]  Seong Sik Shin,et al.  High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C , 2015, Nature Communications.

[43]  Henry J Snaith,et al.  Metal-halide perovskites for photovoltaic and light-emitting devices. , 2015, Nature nanotechnology.

[44]  Tingting Shi,et al.  Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance , 2014, Advanced materials.

[45]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[46]  Daoben Zhu,et al.  Architecture of graphdiyne nanoscale films. , 2010, Chemical communications.

[47]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[48]  J. Kawai,et al.  Comparison of the Sn L edge X-ray absorption spectra and the corresponding electronic structure in Sn, SnO, and SnO2 , 2004 .

[49]  Yiwang Chen,et al.  Elimination of Interfacial Lattice Mismatch and Detrimental Reaction by Self‐Assembled Layer Dual‐Passivation for Efficient and Stable Inverted Perovskite Solar Cells , 2022 .

[50]  Q. Wang,et al.  Graphdiyne Quantum Dots for Much Improved Stability and Efficiency of Perovskite Solar Cells , 2018 .

[51]  H. Tao,et al.  Reducing Hysteresis and Enhancing Performance of Perovskite Solar Cells Using Low-Temperature Processed Y-Doped SnO2 Nanosheets as Electron Selective Layers. , 2017, Small.