Star formation rates in luminous quasars at 2 < z < 3

We investigate the relation between star formation rates (M_s) and AGN properties in optically selected type 1 quasars at 2 < z < 3 using data from Herschel and the SDSS. We find that M_s remains approximately constant with redshift, at 300 ± 100 M⊙ yr^(−1). Conversely, M_s increases with AGN luminosity, up to a maximum of ∼ 600 M⊙ yr^(−1), and with C IV FWHM. In context with previous results, this is consistent with a relation between M_s and black hole accretion rate (M_(bh)) existing in only parts of the z−M_s–M_(bh) plane, dependent on the free gas fraction, the trigger for activity, and the processes that may quench star formation. The relations between M_s and both AGN luminosity and C IV FWHM are consistent with star formation rates in quasars scaling with black hole mass, though we cannot rule out a separate relation with black hole accretion rate. Star formation rates are observed to decline with increasing C IV equivalent width. This decline can be partially explained via the Baldwin effect, but may have an additional contribution from one or more of three factors; M_i is not a linear tracer of L_(2500), the Baldwin effect changes form at high AGN luminosities, and high C IV EW values signpost a change in the relation between M_s and M_(bh). Finally, there is no strong relation between M_s and Eddington ratio, or the asymmetry of the C IV line. The former suggests that star formation rates do not scale with how efficiently the black hole is accreting, while the latter is consistent with C IV asymmetries arising from orientation effects.

[1]  L. Ho,et al.  Star formation in quasar hosts and the origin of radio emission in radio-quiet quasars , 2015, 1511.00013.

[2]  J. Dunlop,et al.  The galaxy UV luminosity function at z≃ 2–4; new results on faint-end slope and the evolution of luminosity density , 2015, 1507.05629.

[3]  A. M. Swinbank,et al.  Cold Dust Emission from X-ray AGN in the SCUBA-2 Cosmology Legacy Survey: Dependence on Luminosity, Obscuration and AGN Activity , 2015, 1509.00018.

[4]  G. Rieke,et al.  THE RELATION BETWEEN LUMINOUS AGNs AND STAR FORMATION IN THEIR HOST GALAXIES , 2015, 1508.02453.

[5]  J. Dunlop,et al.  THE SCUBA-2 COSMOLOGY LEGACY SURVEY: ALMA RESOLVES THE BRIGHT-END OF THE SUB-MILLIMETER NUMBER COUNTS , 2015, 1505.05152.

[6]  C. Frenk,et al.  Molecular hydrogen abundances of galaxies in the EAGLE simulations , 2015, 1503.04807.

[7]  Z. Shao,et al.  AN APPARENT REDSHIFT DEPENDENCE OF QUASAR CONTINUUM: IMPLICATION FOR COSMIC DUST EXTINCTION? , 2015, 1503.02235.

[8]  I. Smail,et al.  Evolution of the H β + [O iii] and [O ii] luminosity functions and the [O ii] star formation history of the Universe up to z ∼ 5 from HiZELS , 2015, 1503.00004.

[9]  A. M. Swinbank,et al.  A remarkably flat relationship between the average star formation rate and AGN luminosity for distant X-ray AGN. , 2015, 1502.07756.

[10]  F. Governato,et al.  Growing black holes and galaxies: black hole accretion versus star formation rate , 2015, 1502.06363.

[11]  A. Cimatti,et al.  Mapping the average AGN accretion rate in the SFR–M* plane for Herschel-selected galaxies at 0 < z ≤ 2.5 , 2015, 1501.07602.

[12]  M. Peeples,et al.  Evolution of the atomic and molecular gas content of galaxies in dark matter haloes , 2014, 1409.1574.

[13]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[14]  A. Myers,et al.  Co-evolution of black hole growth and star formation from a cross-correlation analysis between quasars and the cosmic infrared background. , 2014, 1406.7181.

[15]  F. Boulanger,et al.  Exceptional AGN-driven turbulence inhibits star formation in the 3C 326N radio-galaxy , 2014, 1410.6155.

[16]  K. Jahnke,et al.  Integral field spectroscopy of nearby QSOs – I. ENLR size–luminosity relation, ongoing star formation and resolved gas-phase metallicities , 2014, 1406.4131.

[17]  F. Mannucci,et al.  Black hole accretion preferentially occurs in gas-rich galaxies , 2014, 1403.7966.

[18]  R. Davé,et al.  PROPERTIES OF SUBMILLIMETER GALAXIES IN THE CANDELS GOODS–SOUTH FIELD , 2014, 1402.3268.

[19]  D. Narayanan,et al.  Dusty Star Forming Galaxies at High Redshift , 2014, 1402.1456.

[20]  Research Center for the Early Universe,et al.  STATISTICAL PROPERTIES OF MULTI-EPOCH SPECTRAL VARIABILITY OF SDSS STRIPE 82 QUASARS , 2014, 1401.5074.

[21]  B. Magnelli,et al.  Tracing the cosmic growth of supermassive black holes to z ∼ 3 with Herschel , 2014, 1401.4503.

[22]  O. Shemmer,et al.  Locating star-forming regions in quasar host galaxies , 2013, 1311.1978.

[23]  A. Font-Ribera,et al.  THE HERSCHEL STRIPE 82 SURVEY (HerS): MAPS AND EARLY CATALOG , 2013, 1308.4399.

[24]  Andreas Burkert,et al.  Cosmological simulations of black hole growth: AGN luminosities and downsizing , 2013, 1308.0333.

[25]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[26]  F. Mannucci,et al.  Metallicity evolution, metallicity gradients, and gas fractions at z ~ 3.4 , 2013, 1311.4576.

[27]  J. Trump,et al.  The mean star-forming properties of QSO host galaxies , 2013, 1310.1922.

[28]  D. Elbaz,et al.  Mid- to far-infrared properties of star-forming galaxies and active galactic nuclei , 2013, 1309.3922.

[29]  F. Mannucci,et al.  Strongly star-forming rotating disks in a complex merging system at z = 4,7 as revealed by ALMA , 2013, 1308.5113.

[30]  J. Bernard-Salas,et al.  FAR-INFRARED FINE-STRUCTURE LINE DIAGNOSTICS OF ULTRALUMINOUS INFRARED GALAXIES , 2013, 1308.4165.

[31]  A. Goulding,et al.  BLACK HOLE VARIABILITY AND THE STAR FORMATION–ACTIVE GALACTIC NUCLEUS CONNECTION: DO ALL STAR-FORMING GALAXIES HOST AN ACTIVE GALACTIC NUCLEUS? , 2013, 1306.3218.

[32]  F. Bournaud,et al.  Simulations of supermassive black hole growth in high-redshift disc galaxies , 2013, 1306.2954.

[33]  M. Brodwin,et al.  A CORRELATION BETWEEN STAR FORMATION RATE AND AVERAGE BLACK HOLE ACCRETION IN STAR-FORMING GALAXIES , 2013, Proceedings of the International Astronomical Union.

[34]  S. Nayakshin,et al.  AGN outflows trigger starbursts in gas-rich galaxies , 2013, 1306.0684.

[35]  J. Silk UNLEASHING POSITIVE FEEDBACK: LINKING THE RATES OF STAR FORMATION, SUPERMASSIVE BLACK HOLE ACCRETION, AND OUTFLOWS IN DISTANT GALAXIES , 2013, 1305.5840.

[36]  O. Ilbert,et al.  Connecting stellar mass and star-formation rate to dark matter halo mass out to z ∼ 2 , 2012, 1203.5828.

[37]  G. Richards,et al.  MEAN SPECTRAL ENERGY DISTRIBUTIONS AND BOLOMETRIC CORRECTIONS FOR LUMINOUS QUASARS , 2013, 1304.5573.

[38]  A. Cimatti,et al.  The deepest Herschel-PACS far-infrared survey: number counts and infrared luminosity functions from combined PEP/GOODS-H observations , 2013, 1303.4436.

[39]  J. Moustakas,et al.  A REDLINE STARBURST: CO(2–1) OBSERVATIONS OF AN EDDINGTON-LIMITED GALAXY REVEAL STAR FORMATION AT ITS MOST EXTREME , 2013, 1302.6236.

[40]  A. Cimatti,et al.  The Herschel* PEP/HerMES luminosity function - I. Probing the evolution of PACS selected Galaxies to z ≃ 4 , 2013, 1302.5209.

[41]  Xiaohui Fan,et al.  STAR FORMATION AND GAS KINEMATICS OF QUASAR HOST GALAXIES AT z ∼ 6: NEW INSIGHTS FROM ALMA , 2013, 1302.4154.

[42]  A. Myers,et al.  THE z = 5 QUASAR LUMINOSITY FUNCTION FROM SDSS STRIPE 82 , 2012, 1212.4493.

[43]  O. Ilbert,et al.  HerMES: unveiling obscured star formation – the far-infrared luminosity function of ultraviolet-selected galaxies at z ∼ 1.5 , 2012, 1211.4336.

[44]  J. Dunlop,et al.  Star formation in luminous quasar host galaxies at z=1-2 , 2012, 1208.4143.

[45]  B. Weiner,et al.  PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS IN z ∼ 1–3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES , 2012, 1211.5743.

[46]  W. M. Wood-Vasey,et al.  The Sloan Digital Sky Survey quasar catalog: ninth data release , 2012, 1210.5166.

[47]  D. Elbaz,et al.  THE EVOLVING INTERSTELLAR MEDIUM OF STAR-FORMING GALAXIES SINCE z = 2 AS PROBED BY THEIR INFRARED SPECTRAL ENERGY DISTRIBUTIONS , 2012, 1210.1035.

[48]  I. Physics,et al.  The C iv Baldwin effect in quasi-stellar objects from Seventh Data Release of the Sloan Digital Sky Survey , 2012, 1209.3496.

[49]  B. Altieri,et al.  NO CLEAR SUBMILLIMETER SIGNATURE OF SUPPRESSED STAR FORMATION AMONG X-RAY LUMINOUS ACTIVE GALACTIC NUCLEI , 2012, The Astrophysical Journal.

[50]  A. Fabian,et al.  Active galactic nucleus feedback and triggering of star formation in galaxies , 2012, 1209.1480.

[51]  D. Elbaz,et al.  GOODS-Herschel: ultra-deep XMM-Newton observations reveal AGN/star-formation connection , 2012, 1207.7129.

[52]  Paul S. Smith,et al.  THE CHANDRA MULTI-WAVELENGTH PROJECT: OPTICAL SPECTROSCOPY AND THE BROADBAND SPECTRAL ENERGY DISTRIBUTIONS OF X-RAY-SELECTED AGNs , 2012, 1204.5148.

[53]  Andrew C. Fabian,et al.  Observational Evidence of Active Galactic Nuclei Feedback , 2012 .

[54]  D. Elbaz,et al.  THE HIDDEN “AGN MAIN SEQUENCE”: EVIDENCE FOR A UNIVERSAL BLACK HOLE ACCRETION TO STAR FORMATION RATE RATIO SINCE z ∼ 2 PRODUCING AN MBH–M* RELATION , 2012, 1204.2824.

[55]  A. Cimatti,et al.  The mean star formation rate of X-ray selected active galaxies and its evolution from z~2.5: results from PEP-Herschel , 2012, 1203.6069.

[56]  A. Myers,et al.  The clustering of intermediate-redshift quasars as measured by the Baryon Oscillation Spectroscopic Survey , 2012, 1203.5306.

[57]  D. L. Clements,et al.  HerMES: deep number counts at 250 μm, 350 μm and 500 μm in the COSMOS and GOODS-N fields and the build-up of the cosmic infrared background , 2012, 1203.1925.

[58]  A. Diamond-Stanic,et al.  THE RELATIONSHIP BETWEEN BLACK HOLE GROWTH AND STAR FORMATION IN SEYFERT GALAXIES , 2011, 1106.3565.

[59]  Adam D. Myers,et al.  THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION FOR DATA RELEASE NINE , 2011, 1105.0606.

[60]  P. Hall,et al.  DIRECT EVIDENCE FOR TERMINATION OF OBSCURED STAR FORMATION BY RADIATIVELY DRIVEN OUTFLOWS IN REDDENED QSOs , 2011, 1112.1092.

[61]  J. Silk,et al.  Jet-induced star formation in gas-rich galaxies , 2011, 1111.4478.

[62]  R. Morganti,et al.  SPITZER MID-IR SPECTROSCOPY OF POWERFUL 2 JY AND 3CRR RADIO GALAXIES. I. EVIDENCE AGAINST A STRONG STARBURST–AGN CONNECTION IN RADIO-LOUD AGN , 2011, 1111.4476.

[63]  W. Brandt,et al.  SUPERMASSIVE BLACK HOLE GROWTH IN STARBURST GALAXIES OVER COSMIC TIME: CONSTRAINTS FROM THE DEEPEST CHANDRA FIELDS , 2011, 1108.3229.

[64]  A. Cimatti,et al.  THE LESSER ROLE OF STARBURSTS IN STAR FORMATION AT z = 2 , 2011, 1108.0933.

[65]  Jun Li,et al.  THE NEXT GENERATION ATLAS OF QUASAR SPECTRAL ENERGY DISTRIBUTIONS FROM RADIO TO X-RAYS , 2011, 1107.1855.

[66]  A. Koekemoer,et al.  GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR–MASS PLANE FROM z ∼ 2.5 TO z ∼ 0.1 , 2011, 1107.0317.

[67]  Tucson,et al.  GOODS-Herschel: the far-infrared view of star formation in active galactic nucleus host galaxies since z ≈ 3 , 2011, 1106.4284.

[68]  J. Trump,et al.  Black hole accretion and host galaxies of obscured quasars in XMM-COSMOS , 2011, 1105.5395.

[69]  D. Calzetti,et al.  GOODS–Herschel: an infrared main sequence for star-forming galaxies , 2011, 1105.2537.

[70]  N. Erickson,et al.  EVIDENCE FOR 1000 km s−1 MOLECULAR OUTFLOWS IN THE LOCAL ULIRG POPULATION , 2011, 1103.5508.

[71]  S. Maddox,et al.  Herschel-ATLAS: the link between accretion luminosity and star formation in quasar host galaxies , 2011, 1103.3905.

[72]  T. Morokuma,et al.  ULTRAVIOLET CONTINUUM COLOR VARIABILITY OF LUMINOUS SLOAN DIGITAL SKY SURVEY QSOs , 2011, 1103.3619.

[73]  R. Giovanelli,et al.  COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies – I. Relations between H2, H i, stellar content and structural properties , 2011, 1103.1642.

[74]  CEA-Saclay,et al.  Defining the intrinsic AGN infrared spectral energy distribution and measuring its contribution to the infrared output of composite galaxies , 2011, 1102.1425.

[75]  U. Tsukuba,et al.  Infrared 3–4 μm Spectroscopy of Nearby PG QSOs and AGN–Nuclear Starburst Connections in High-Luminosity AGN Populations , 2011, 1101.1970.

[76]  B. A. Weaver,et al.  Variability selected high-redshift quasars on SDSS Stripe 82 , 2010, 1012.2391.

[77]  G. Richards,et al.  UNIFICATION OF LUMINOUS TYPE 1 QUASARS THROUGH C iv EMISSION , 2010, 1011.2282.

[78]  C. Kochanek,et al.  BLACK HOLE MASS ESTIMATES BASED ON C iv ARE CONSISTENT WITH THOSE BASED ON THE BALMER LINES , 2010, 1009.1145.

[79]  Stephan Ott,et al.  The Herschel Data Processing System - HIPE and Pipelines - Up and Running Since the Start of the Mission , 2010, 1011.1209.

[80]  Lars Hernquist,et al.  CONSTRAINTS ON BLACK HOLE GROWTH, QUASAR LIFETIMES, AND EDDINGTON RATIO DISTRIBUTIONS FROM THE SDSS BROAD-LINE QUASAR BLACK HOLE MASS FUNCTION , 2010, 1006.3561.

[81]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[82]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[83]  A. Cimatti,et al.  Star formation in AGN hosts in GOODS-N , 2010, 1005.2562.

[84]  D. Elbaz,et al.  HerMES: Far infrared properties of known AGN in the HerMES fields , 2010, 1005.2192.

[85]  M. Dopita,et al.  UV-DROPOUT GALAXIES IN THE GOODS-SOUTH FIELD FROM WFC3 EARLY RELEASE SCIENCE OBSERVATIONS , 2010, 1004.5141.

[86]  B. Weiner,et al.  A study of the gas–star formation relation over cosmic time , 2010, 1003.5180.

[87]  N. Bavouzet,et al.  Submillimeter number counts at 250 μm, 350 μm and 500 μm in BLAST data , 2010, 1003.0833.

[88]  A. M. Swinbank,et al.  MID-INFRARED SPECTROSCOPY OF CANDIDATE ACTIVE GALACTIC NUCLEI-DOMINATED SUBMILLIMETER GALAXIES , 2010, 1003.0447.

[89]  H. Netzer Accretion and star formation rates in low‐redshift type II active galactic nuclei , 2009, 0907.3575.

[90]  D. Berk,et al.  PROBING THE ORIGINS OF THE C iv AND Fe Kα BALDWIN EFFECTS , 2009, 0907.2552.

[91]  R. Siebenmorgen,et al.  Starburst and cirrus models for submillimeter galaxies , 2009, 0906.0446.

[92]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[93]  B. Garilli,et al.  ONGOING AND CO-EVOLVING STAR FORMATION IN zCOSMOS GALAXIES HOSTING ACTIVE GALACTIC NUCLEI , 2008, 0810.3653.

[94]  C. Steidel,et al.  A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.

[95]  B. Madore,et al.  THE STAR FORMATION EFFICIENCY IN NEARBY GALAXIES: MEASURING WHERE GAS FORMS STARS EFFECTIVELY , 2008, 0810.2556.

[96]  P. Hopkins,et al.  A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei , 2008, 0808.1227.

[97]  Nanjing,et al.  The origin and evolution of C IV Baldwin effect in QSOs from the Sloan Digital Sky Survey , 2008, 0806.1787.

[98]  P. Andreani,et al.  Star Formation in the Hosts of High-z QSOs: Evidence from Spitzer PAH Detections , 2008, 0805.2669.

[99]  T. Treu,et al.  Cosmic Evolution of Black Holes and Spheroids. III. The MBH-σ* Relation in the Last Six Billion Years , 2008, 0804.0235.

[100]  Heidelberg,et al.  Three-dimensional radiative transfer models of clumpy tori in Seyfert galaxies , 2008, 0802.2604.

[101]  M. Halpern,et al.  SANEPIC: A Mapmaking Method for Time Stream Data from Large Arrays , 2007, 0711.3462.

[102]  Riverside,et al.  Large Amounts of Optically Obscured Star Formation in the Host Galaxies of Some Type 2 Quasars , 2007, 0709.4069.

[103]  M. Rowan-Robinson,et al.  The Herschel Multi-tiered Extragalactic Survey: HerMES , 2012, 1203.2562.

[104]  K. Gebhardt,et al.  The Black Hole Mass-Galaxy Bulge Relationship for QSOs in the Sloan Digital Sky Survey Data Release 3 , 2006, astro-ph/0612568.

[105]  D. Dultzin,et al.  C IV λ1549 as an Eigenvector 1 Parameter for Active Galactic Nuclei , 2007, 0705.1895.

[106]  W. Brandt,et al.  Radio through X-Ray Spectral Energy Distributions of 38 Broad Absorption Line Quasars , 2007, 0705.0538.

[107]  J. Wall,et al.  The evolution of submillimetre galaxies : two populations and a redshift cut-off , 2007, astro-ph/0702682.

[108]  R. McMahon,et al.  A sensitive submillimetre survey of broad absorption-line quasars , 2006, astro-ph/0610472.

[109]  S. Veilleux,et al.  Spitzer Quasar and ULIRG Evolution Study (QUEST). I. The Origin of the Far-Infrared Continuum of QSOs , 2006, astro-ph/0606158.

[110]  J. Lehár,et al.  Probing the Coevolution of Supermassive Black Holes and Galaxies Using Gravitationally Lensed Quasar Hosts , 2006, astro-ph/0603248.

[111]  P. Hopkins,et al.  The Relation between Quasar and Merging Galaxy Luminosity Functions and the Merger-driven Star Formation History of the Universe , 2006, astro-ph/0602290.

[112]  A. Szalay,et al.  Spectral Energy Distributions and Multiwavelength Selection of Type 1 Quasars , 2006, astro-ph/0601558.

[113]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3 , 2006, astro-ph/0601434.

[114]  Padova,et al.  Revisiting the infrared spectra of active galactic nuclei with a new torus emission model , 2005, astro-ph/0511428.

[115]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[116]  John W. Mason Astrophysics update 2 , 2006 .

[117]  R. Somerville,et al.  THE RELATION BETWEEN QUASAR AND MERGING GALAXY LUMINOSITY FUNCTIONS AND THE MERGER-INDUCED STAR FORMATION RATE OF THE UNIVERSE , 2006 .

[118]  National Radio Astronomy Observatory,et al.  The Black Hole-Bulge Relationship for QSOs at High Redshift , 2005, astro-ph/0512418.

[119]  K. Gebhardt,et al.  The black hole mass–galaxy bulge relationship for QSOs in the SDSS DR3 , 2005 .

[120]  W. Brandt,et al.  The X-Ray Spectral Properties of SCUBA Galaxies , 2005, astro-ph/0506608.

[121]  Christopher D. Martin,et al.  Spitzer View on the Evolution of Star-forming Galaxies from z = 0 to z ~ 3 , 2005, astro-ph/0505101.

[122]  A. Laor,et al.  What controls the C iv line profile in active galactic nuclei , 2004, astro-ph/0409196.

[123]  T. D. Matteo,et al.  Tracing the cosmological assembly of stars and supermassive black holes in galaxies , 2004, astro-ph/0409187.

[124]  R. Zamanov,et al.  Average Ultraviolet Quasar Spectra in the Context of Eigenvector 1: A Baldwin Effect Governed by the Eddington Ratio? , 2004, astro-ph/0408334.

[125]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[126]  A. Laor,et al.  On the origin of the C iv Baldwin effect in active galactic nuclei , 2004, astro-ph/0403365.

[127]  M. Dietrich,et al.  Active Galactic Nucleus Emission-Line Properties Versus the Eddington Ratio , 2004, astro-ph/0402471.

[128]  D. Clements,et al.  Starburst and AGN activity in ultraluminous infrared galaxies , 2003, astro-ph/0304154.

[129]  Henry C. Ferguson,et al.  The Evolution of the Global Stellar Mass Density at 0 < z < 3 , 2002, astro-ph/0212242.

[130]  IoA,et al.  The SCUBA Bright Quasar Survey (SBQS) - II. Unveiling the quasar epoch at submillimetre wavelengths , 2002, astro-ph/0211646.

[131]  J. Shields,et al.  Continuum and Emission-Line Strength Relations for a Large Active Galactic Nuclei Sample , 2002, astro-ph/0208348.

[132]  M. SubbaRao,et al.  Broad Emission-Line Shifts in Quasars: An Orientation Measure for Radio-Quiet Quasars? , 2002, astro-ph/0204162.

[133]  B. Peterson,et al.  Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships , 2002, astro-ph/0601303.

[134]  S. Tremaine,et al.  The Slope of the Black Hole Mass versus Velocity Dispersion Correlation , 2002, astro-ph/0203468.

[135]  A. Fernández-Soto,et al.  The Star Formation Rate Intensity Distribution Function: Implications for the Cosmic Star Formation Rate History of the Universe , 2001, astro-ph/0111129.

[136]  P. Green,et al.  Quasar Evolution and the Baldwin Effect in the Large Bright Quasar Survey , 2001, astro-ph/0104029.

[137]  Ralf Siebenmorgen,et al.  Massive star formation in galaxies: radiative transfer models of the UV to millimetre emission of starburst galaxies , 2000 .

[138]  P. Green,et al.  Investigation of the Relation between the Spectral Energy Distributions and Emission Lines in Low-Redshift Quasars , 1999 .

[139]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[140]  R. Wechsler,et al.  The nature of high-redshift galaxies , 1998, astro-ph/0006364.

[141]  S. Tremaine,et al.  The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.

[142]  D. Kunze,et al.  What Powers Ultraluminous IRAS Galaxies? , 1997, astro-ph/9711255.

[143]  A. Szalay,et al.  The Evolution of the Global Star Formation History as Measured from the Hubble Deep Field , 1997, astro-ph/9706255.

[144]  Charles L. Bennett,et al.  High-Latitude Galactic Emission in the COBE Differential Microwave Radiometer 2 Year Sky Maps , 1996 .

[145]  M. Rowan-Robinson,et al.  Dusty discs in active galactic nuclei , 1995 .

[146]  R. Green,et al.  Luminosity effects and the emission-line properties of quasars with 0 less than z less than 3.8 , 1994 .

[147]  M. S. Oey,et al.  Atlas of quasar energy distributions , 1994 .

[148]  Julian H. Krolik,et al.  Infrared spectra of obscuring dust tori around active galactic nuclei. I - Calculational method and basic trends , 1992 .

[149]  H. Netzer,et al.  Quasar discs – III. Line and continuum correlations , 1992 .

[150]  A. R. Rivolo,et al.  A study of the Baldwin effect in the IUE data set , 1990 .

[151]  J. B. Oke,et al.  More spectroscopy of the fuzz around QSOs: additional evidence for two types of QSO , 1985 .

[152]  J. Baldwin Luminosity Indicators in the Spectra of Quasi-Stellar Objects , 1977 .

[153]  R. Siebenmorgen,et al.  Massive Star Formation in Galaxies : Radiative transfer models of the UV to mm emission of starburst galaxies , 2022 .