Global Dissipativity for A-Stable Methods
暂无分享,去创建一个
[1] Jack K. Hale,et al. Upper semicontinuity of attractors for approximations of semigroups and partial differential equations , 1988 .
[2] G. Dahlquist. A special stability problem for linear multistep methods , 1963 .
[3] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[4] John C. Butcher,et al. A stability property of implicit Runge-Kutta methods , 1975 .
[5] Olavi Nevanlinna,et al. Multiplier techniques for linear multistep methods , 1981 .
[6] Endre Süli,et al. Upper semicontinuity of attractors for linear multistep methods approximating sectorial evolution equations , 1995 .
[7] What do multistep methods approximate? , 1988 .
[8] Andrew M. Stuart,et al. Runge-Kutta methods for dissipative and gradient dynamical systems , 1994 .
[9] M. Crouzeix,et al. On the equivalence of A-stability and G-stability , 1989 .
[10] L. Kantorovich,et al. Functional analysis in normed spaces , 1952 .
[11] G. Pólya,et al. Functions of One Complex Variable , 1998 .
[12] Germund Dahlquist,et al. G-stability is equivalent toA-stability , 1978 .
[13] R. Temam. Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .