Blow-off of aluminium films

The blow-off of Al targets from a transparent support by single pulses of intense laser irradiation through the support is investigated for target thicknesses up to some μm. The blow-off process is theoretically described by calculations of the phase front dynamics in the target, adopted from Harrach's analytical solutions for laser heating and burnthrough of opaque solid slabs. Experimentally two laser beam sources were used: a Nd:YAG laser with a Gaussian intensity profile and a Nd:Glass-laser system with a homogenized flat-top profile. Two types of removal mechanism could be identified. In the first mode (low laser intensities and/or thin targets) the target is completely molten and can easily be blown-off by the vapor originating at the target-support interface. In the second mode (high laser intensities and/or thick targets) superheating of the liquid Al or a burst of the remaining solid layer of the target occurs. In both cases in the second mode the blow-off process is characterized by higher vapor pressures.

[1]  A. N. Jette,et al.  Metal deposition at 532 nm using a laser transfer technique , 1988 .

[2]  L. Vriens,et al.  Laser-induced optical recording in thin films , 1983 .

[3]  Michael J. Berry,et al.  Small‐scale laser effects experiments on graphite: Coupling coefficient, lateral loss, and effective heat of ablation , 1987 .

[4]  C. Klein,et al.  Laser-ablation profiles in graphite - Application of the heat-balance integral method , 1987 .

[5]  J. Mazumder,et al.  One‐dimensional steady‐state model for damage by vaporization and liquid expulsion due to laser‐material interaction , 1987 .

[6]  Eric Fogarassy,et al.  Laser-induced forward transfer: A new approach for the deposition of high T_c superconducting thin films , 1989 .

[7]  J. Jacobs,et al.  Boiling Effects and Bubble Formation at the Solid‐Liquid Interface during Laser‐Induced Metal Deposition , 1987 .

[8]  Robert J. Harrach Analytical solutions for laser heating and burnthrough of opaque solid slabs , 1977 .

[9]  D'Ans,et al.  Taschenbuch für Chemiker und Physiker , 1943 .

[10]  E. Siegel Optical reflectivity of liquid metals at their melting temperatures , 1976 .

[11]  Péter B. Barna,et al.  Ellipsometric and X-ray specular reflection studies on naturally grown overlayers on aluminium thin films , 1984 .

[12]  Y. S. Touloukian THERMOPHYSICAL PROPERTIES OF HIGH TEMPERATURE SOLID MATERIALS. , 1967 .

[13]  Arnold Eucken,et al.  Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik , 1950 .

[14]  F. J. Adrian,et al.  Metal deposition from a supported metal film using an excimer laser , 1986 .

[15]  A. N. Jette,et al.  A study of the mechanism of metal deposition by the laser-induced forward transfer process , 1987 .

[16]  J. C. Wyant,et al.  Report to The American Physical Society of the study group on science and technology of directed energy weapons , 1987 .

[17]  Y. S. Touloukian Thermophysical properties of matter , 1970 .

[18]  J. C. Andreshak,et al.  Threshold for Single Excimer Laser Pulse Backside Removal of Thin Metal Films from Optical Quartz , 1988 .

[19]  A. Fischer,et al.  Laser trimming of NiCr thin film resistors II: Thin film resistors with an SiO2 protective layer , 1989 .

[20]  O. Fuchs Taschenbuch für Chemiker und Physiker, herausgeg. von J. D'Ans u. E. Lax, Springer-Verlag, Berlin-Göttingen-Heidelberg 1949, 2. berichtigte Auflage, 1895 S. Preis DM 36,— , 1950 .