Efficient entanglement channel construction schemes for a theoretical quantum network model with d-level system

Quantum entanglement plays an essential role in the field of quantum information and quantum computation. In quantum network, a general assumption for many quantum tasks is that the quantum entanglement has been prior shared among participants. Actually, the distribution of entanglement becomes complex in the network environment. We present a theoretical quantum network model with good scalability. Then, three efficient and perfect schemes for the entanglement channel construction are proposed. Some general results for d-level system are also given. Any two communication sites can construct an entanglement channel via Bell states with the assistance of the intermediate sites on their quantum chain. By using the established entanglement channel, n sites can efficiently and perfectly construct an entanglement channel via an n-qudit cat state. More importantly, an entanglement channel via an arbitrary n-qudit state can also be constructed among any n sites, or even among any t sites where 1 ≤ t ≤ n. The constructed multiparticle entanglement channels have many useful applications in quantum network environment.

[1]  Jacob M. Taylor,et al.  Quantum repeater with encoding , 2008, 0809.3629.

[2]  Richard J. Hughes,et al.  Optical networking for quantum key distribution and quantum communications , 2009 .

[3]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[4]  Biham,et al.  Quantum cryptographic network based on quantum memories. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[5]  Peter Hoyer,et al.  Multiparty quantum communication complexity. , 1997 .

[6]  Qiaoyan Wen,et al.  Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol , 2007, 0801.2418.

[7]  A R Dixon,et al.  Field test of quantum key distribution in the Tokyo QKD Network. , 2011, Optics express.

[8]  V. Karimipour,et al.  Entanglement swapping of generalized cat states and secret sharing , 2001, quant-ph/0112050.

[9]  Prem Kumar,et al.  Infrastructure for the quantum internet , 2004, CCRV.

[10]  Chip Elliott,et al.  Current status of the DARPA Quantum Network , 2005 .

[11]  Chui-Ping Yang,et al.  Efficient many-party controlled teleportation of multiqubit quantum information via entanglement , 2004, quant-ph/0402138.

[12]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[13]  C. Elliott Building the quantum network* , 2002 .

[14]  Zhan-jun Zhang Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message , 2006 .

[15]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[16]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[17]  Ujjwal Sen,et al.  Multiqubit W states lead to stronger nonclassicality than Greenberger-Horne-Zeilinger states , 2003 .

[18]  B. A. Nguyen,et al.  Joint remote state preparation , 2008 .

[19]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[20]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[21]  Rui-Bo Jin,et al.  A simple scheme for quantum networks based on orbital angular momentum states of photons , 2008 .

[22]  Guo-Jian Yang,et al.  Generation and discrimination of a type of four-partite entangled state , 2008 .

[23]  N. Metwally Entangled network and quantum communication , 2011, 1106.1261.

[24]  M. Shahriar,et al.  Teleportation and the Quantum Internet , 2022 .

[25]  Y. Yeo,et al.  Teleportation and dense coding with genuine multipartite entanglement. , 2005, Physical review letters.

[26]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[27]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[28]  Li-Hua Gong,et al.  Quantum deterministic key distribution protocols based on teleportation and entanglement swapping , 2011 .

[29]  N. An Joint remote state preparation via W and W-type states , 2010 .

[30]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[31]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[32]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[33]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[34]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[35]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[36]  Mehrdad Dianati,et al.  Architecture of the Secoqc Quantum Key Distribution network , 2007, 2007 First International Conference on Quantum, Nano, and Micro Technologies (ICQNM'07).

[37]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[38]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[39]  D. Browne,et al.  Secure multiparty computation with a dishonest majority via quantum means , 2009, 0906.2297.

[40]  Li-Hua Gong,et al.  Quantum deterministic key distribution protocols based on the authenticated entanglement channel , 2010 .

[41]  H. Weinfurter,et al.  The SECOQC quantum key distribution network in Vienna , 2009, 2009 35th European Conference on Optical Communication.

[42]  Liang Jiang,et al.  Optimal approach to quantum communication using dynamic programming , 2007, Proceedings of the National Academy of Sciences.

[43]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.