Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures

Phase information and spatially coherent illumination have usually been considered indispensable components of most microwave imaging systems. Dynamic metasurface apertures (DMAs)—with their ability to generate spatially incoherent illumination—have recently supplanted these assumptions in favor of simplified imaging hardware. In light of this development, we investigate the coherence of a phaseless imaging system based on metasurface apertures. In doing so, we propose and experimentally demonstrate coherent and incoherent computational microwave ghost imaging using DMAs. These apertures can generate a multitude of distinct speckle fields at a single frequency by modulating the electrical properties of radiating complementary metamaterial elements patterned into the surface of a waveguide. We show that a pair of dynamic apertures, one acting as transmit and the other as receive, can achieve two-dimensional, phaseless, coherent imaging. Further, by averaging the intensity measurements obtained in this manner over a random set or ensemble of receive aperture distributions, we demonstrate that an incoherent imaging system can be achieved in which single-port ensemble averaging by the electrically large DMA plays the role of spatial averaging in a bucket detector. We investigate the effects of these different imaging schemes on the resulting reconstructions and provide experimental demonstrations.

[1]  Fernando Las-Heras,et al.  Phaseless Antenna Measurement on Non-Redundant Sample Points Via Leith-Upatnieks Holography , 2013, IEEE Transactions on Antennas and Propagation.

[2]  M. Fink,et al.  Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations , 2014, Nature Photonics.

[3]  David R Smith,et al.  Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture. , 2018, Applied optics.

[4]  J L Thomas,et al.  Time reversal and the inverse filter. , 2000, The Journal of the Acoustical Society of America.

[5]  Shuai Li,et al.  Lensless computational imaging through deep learning , 2017, ArXiv.

[6]  David R. Smith,et al.  Analysis of a Waveguide-Fed Metasurface Antenna , 2017, 1711.01448.

[7]  Amin M. Abbosh,et al.  Microwave System for Head Imaging , 2014, IEEE Transactions on Instrumentation and Measurement.

[8]  David R. Smith,et al.  Metamaterial Apertures for Computational Imaging , 2013, Science.

[9]  Colin J. R. Sheppard,et al.  Three-dimensional coherent transfer function in a reflection-mode confocal scanning microscope , 1991 .

[10]  Xiang Peng,et al.  Singular value decomposition ghost imaging. , 2018, Optics express.

[11]  David R. Smith,et al.  Comprehensive simulation platform for a metamaterial imaging system. , 2015, Applied optics.

[12]  Matthew S. Reynolds,et al.  Waveguide-Fed Tunable Metamaterial Element for Dynamic Apertures , 2016, IEEE Antennas and Wireless Propagation Letters.

[13]  Thomas Fromenteze,et al.  Single-frequency microwave imaging with dynamic metasurface apertures , 2017, 1704.03303.

[14]  Y. Shih,et al.  Two-photon "ghost" imaging with thermal light , 2004, 2005 Quantum Electronics and Laser Science Conference.

[15]  Thomas Fromenteze,et al.  Application of range migration algorithms to imaging with a dynamic metasurface antenna , 2016 .

[16]  Wei Wang,et al.  Iterative ghost imaging. , 2014, Optics letters.

[17]  Fernando Las-Heras,et al.  Improving Security Screening: A Comparison of Multistatic Radar Configurations for Human Body Imaging , 2016, IEEE Antennas and Propagation Magazine.

[18]  David R. Smith,et al.  Terahertz compressive imaging with metamaterial spatial light modulators , 2014, Nature Photonics.

[19]  O. Katz,et al.  Ghost imaging with a single detector , 2008, 0812.2633.

[20]  David R. Smith,et al.  Metamaterial apertures for coherent computational imaging on the physical layer. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[21]  Benjamin Fuchs,et al.  Computational passive imaging of thermal sources with a leaky chaotic cavity , 2017 .

[22]  Jinli Suo,et al.  Gerchberg-Saxton-like ghost imaging. , 2015, Optics express.

[23]  Jeffrey H. Shapiro,et al.  Computational ghost imaging , 2008, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[24]  Shih,et al.  Optical imaging by means of two-photon quantum entanglement. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[25]  Maryam Ravan,et al.  Near-Field Microwave Imaging Based on Aperture Raster Scanning With TEM Horn Antennas , 2011, IEEE Transactions on Antennas and Propagation.

[26]  Chi Zhang,et al.  Object reconstitution using pseudo-inverse for ghost imaging. , 2014, Optics express.

[27]  A. Gatti,et al.  Differential ghost imaging. , 2010, Physical review letters.

[28]  Thomas E. Hall,et al.  Three-dimensional millimeter-wave imaging for concealed weapon detection , 2001 .

[29]  M. Gustafsson,et al.  Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. , 2008, Biophysical journal.

[30]  David R. Smith,et al.  Cavity-backed metasurface antennas and their application to frequency diversity imaging. , 2017, Journal of the Optical Society of America. A, Optics, image science, and vision.

[31]  Thomas Fromenteze,et al.  Relaxation of Alignment Errors and Phase Calibration in Computational Frequency-Diverse Imaging using Phase Retrieval , 2018, IEEE Access.

[32]  Xu Li,et al.  Microwave imaging via space-time beamforming for early detection of breast cancer , 2003 .

[33]  David R. Smith,et al.  Microwave Imaging Using a Disordered Cavity with a Dynamically Tunable Impedance Surface , 2016 .

[34]  N. Nikolova Microwave Imaging for Breast Cancer , 2011, IEEE Microwave Magazine.

[35]  M. Padgett,et al.  3D Computational Imaging with Single-Pixel Detectors , 2013, Science.

[36]  Michael Boyarsky,et al.  Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements , 2017 .

[37]  A. Gatti,et al.  Coherent imaging with pseudo-thermal incoherent light , 2005, quant-ph/0504082.

[38]  Fernando Las-Heras,et al.  Interferometric Technique With Nonredundant Sampling for Phaseless Inverse Scattering , 2014, IEEE Transactions on Antennas and Propagation.

[39]  A. Gatti,et al.  Experimental evidence of high-resolution ghost imaging and ghost diffraction with classical thermal light , 2004, quant-ph/0408021.

[40]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[41]  Jing Cheng Transfer functions in lensless ghost-imaging systems , 2008 .

[42]  Lorenz-Peter Schmidt,et al.  A Novel Fully Electronic Active Real-Time Imager Based on a Planar Multistatic Sparse Array , 2011, IEEE Transactions on Microwave Theory and Techniques.

[43]  Kannan Ramchandran,et al.  Multiplexed coded illumination for Fourier Ptychography with an LED array microscope. , 2014, Biomedical optics express.

[44]  Marc Levoy,et al.  Dual photography , 2005, SIGGRAPH 2005.

[45]  J. Shapiro,et al.  Normalized ghost imaging , 2012, 1212.5041.

[46]  A. Gatti,et al.  Ghost imaging schemes: fast and broadband. , 2004, Optics express.

[47]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[48]  Federico Ferri,et al.  Longitudinal coherence in thermal ghost imaging , 2008 .

[49]  David R. Smith,et al.  Fourier Accelerated Multistatic Imaging: A Fast Reconstruction Algorithm for Multiple-Input-Multiple-Output Radar Imaging , 2017, IEEE Access.

[50]  Kamal Sarabandi,et al.  Refocusing Through Building Walls Using Synthetic Aperture Radar , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[51]  G. Turin,et al.  An introduction to matched filters , 1960, IRE Trans. Inf. Theory.

[52]  Thomas Fromenteze,et al.  Single-frequency near-field MIMO imaging , 2017, 2017 11th European Conference on Antennas and Propagation (EUCAP).

[53]  Hui Cao,et al.  Customizing Speckle Intensity Statistics , 2017, 1711.11128.

[54]  S M Mahdi Khamoushi,et al.  Sinusoidal ghost imaging. , 2015, Optics letters.

[55]  Michael Boyarsky,et al.  Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies , 2016 .

[56]  Anne Sentenac,et al.  Structured illumination microscopy using unknown speckle patterns , 2012, Nature Photonics.

[57]  David R. Smith,et al.  Metamaterial microwave holographic imaging system. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[58]  David R. Smith,et al.  Computational microwave imaging using 3D printed conductive polymer frequency-diverse metasurface antennas , 2017, 1704.02017.

[59]  Thomas Fromenteze,et al.  Phaseless computational imaging with a radiating metasurface. , 2016, Optics express.

[60]  Thomas Hall,et al.  Near-field three-dimensional radar imaging techniques and applications. , 2010, Applied optics.

[61]  David R. Smith,et al.  Dual-Polarization Printed Holographic Multibeam Metasurface Antenna , 2017, IEEE Antennas and Wireless Propagation Letters.

[62]  O. Katz,et al.  Compressive ghost imaging , 2009, 0905.0321.

[63]  Michael Boyarsky,et al.  Orthogonal Coded Active Illumination for Millimeter Wave, Massive-MIMO Computational Imaging With Metasurface Antennas , 2018, IEEE Transactions on Computational Imaging.

[64]  A. Gatti,et al.  High-resolution ghost image and ghost diffraction experiments with thermal light. , 2005, Physical review letters.

[65]  C. Sheppard,et al.  Three-dimensional imaging in a microscope , 1989 .

[66]  D. Agard,et al.  Fluorescence microscopy in three dimensions. , 1989, Methods in cell biology.

[67]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[68]  Shih,et al.  Observation of two-photon "ghost" interference and diffraction. , 1995, Physical review letters.

[69]  David R. Smith,et al.  Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling , 2017 .

[70]  Aristide Dogariu,et al.  Compressive correlation imaging with random illumination. , 2015, Optics letters.

[71]  David R. Smith,et al.  Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale , 2017, Scientific Reports.

[72]  William F. Moulder,et al.  Development of a high-throughput microwave imaging system for concealed weapons detection , 2016, 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST).

[73]  David R. Smith,et al.  Dynamic metamaterial aperture for microwave imaging , 2015 .

[74]  Bahaa E. A. Saleh,et al.  Entangled-photon Fourier optics , 2002 .

[75]  Fernando Las-Heras,et al.  Phaseless Synthetic Aperture Radar With Efficient Sampling for Broadband Near-Field Imaging: Theory and Validation , 2015, IEEE Transactions on Antennas and Propagation.

[76]  Laurent Daudet,et al.  Imaging With Nature: Compressive Imaging Using a Multiply Scattering Medium , 2013, Scientific Reports.

[77]  C. Sheppard,et al.  Three-dimensional transfer functions for high-aperture systems , 1994 .

[78]  Kubilay Sertel,et al.  Phase-Sensitive Single-Pixel THz Imaging Using Intensity-Only Measurements , 2016, IEEE Transactions on Terahertz Science and Technology.

[79]  Philip S. Considine,et al.  Effects of Coherence on Imaging Systems , 1966 .

[80]  Samuel J. Lord,et al.  Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function , 2009, Proceedings of the National Academy of Sciences.

[81]  Wai Lam Chan,et al.  Imaging with terahertz radiation , 2007 .

[82]  Rick S. Blum,et al.  Phase Synchronization for Coherent MIMO Radar: Algorithms and Their Analysis , 2011, IEEE Transactions on Signal Processing.

[83]  L. Waller,et al.  Phase-space measurement and coherence synthesis of optical beams , 2012, Nature Photonics.

[84]  J. Bertolotti,et al.  Non-invasive imaging through opaque scattering layers , 2012, Nature.

[85]  David R. Smith,et al.  Single-frequency 3D synthetic aperture imaging with dynamic metasurface antennas. , 2018, Applied optics.

[86]  Fernando L. Teixeira,et al.  Electrically small, complementary electric-field-coupled resonator antennas , 2013 .

[87]  N. Streibl Three-dimensional imaging by a microscope , 1985 .

[88]  David R. Smith,et al.  Spatially resolving antenna arrays using frequency diversity. , 2016, Journal of the Optical Society of America. A, Optics, image science, and vision.

[89]  Mehrdad Soumekh Bistatic synthetic aperture radar inversion with application in dynamic object imaging , 1991, IEEE Trans. Signal Process..

[90]  David J. Brady,et al.  Multiscale gigapixel photography , 2012, Nature.