Production and decay of evolving horizons

We consider a simple physical model for an evolving horizon that is strongly interacting with its environment, exchanging arbitrarily large quantities of matter with its environment in the form of both infalling material and outgoing Hawking radiation. We permit fluxes of both lightlike and timelike particles to cross the horizon, and ask how the horizon grows and shrinks in response to such flows. We place a premium on providing a clear and straightforward exposition with simple formulae. To be able to handle such a highly dynamical situation in a simple manner we make one significant physical restriction—that of spherical symmetry—and two technical mathematical restrictions: (1) we choose to slice the spacetime in such a way that the spacetime foliations (and hence the horizons) are always spherically symmetric. (2) Furthermore, we adopt Painlevé–Gullstrand coordinates (which are well suited to the problem because they are nonsingular at the horizon) in order to simplify the relevant calculations. Of course physics results are ultimately independent of the choice of coordinates, but this particular coordinate system yields a clean physical interpretation of the relevant physics. We find particularly simple forms for surface gravity, and for the first and second law of black hole thermodynamics, in this general evolving horizon situation. Furthermore, we relate our results to Hawking's apparent horizon, Ashtekar and co-worker's isolated and dynamical horizons, and Hayward's trapping horizon. The evolving black hole model discussed here will be of interest, both from an astrophysical viewpoint in terms of discussing growing black holes and from a purely theoretical viewpoint in discussing black hole evaporation via Hawking radiation.

[1]  A. Hamilton,et al.  The river model of black holes , 2004, gr-qc/0411060.

[2]  B. Krishnan,et al.  Non-symmetric trapped surfaces in the Schwarzschild and Vaidya spacetimes , 2005, gr-qc/0511017.

[3]  S. Hayward Formation and evaporation of nonsingular black holes. , 2005, Physical review letters.

[4]  I. Booth Black hole boundaries , 2005, gr-qc/0508107.

[5]  S. Hawking Information loss in black holes , 2005, hep-th/0507171.

[6]  S. Hayward FORMATION AND EVAPORATION OF REGULAR BLACK HOLES , 2005 .

[7]  José A. González,et al.  Marginally trapped tubes and dynamical horizons , 2005, gr-qc/0506119.

[8]  S. Hayward The disinformation problem for black holes (pop version) , 2005, gr-qc/0504038.

[9]  S. Hayward The disinformation problem for black holes (conference version) , 2005, gr-qc/0504037.

[10]  A. Ashtekar,et al.  Black hole evaporation: a paradigm , 2005, gr-qc/0504029.

[11]  A. Ashtekar,et al.  Some uniqueness results for dynamical horizons , 2005, gr-qc/0503109.

[12]  O. Winkler,et al.  Flat slice hamiltonian formalism for dynamical black holes , 2005, gr-qc/0503031.

[13]  V. Husain,et al.  Quantum resolution of black hole singularities , 2004, gr-qc/0410125.

[14]  V. Husain,et al.  Quantum black holes from null expansion operators , 2004, gr-qc/0412039.

[15]  V. Husain,et al.  Quantum black holes , 2004 .

[16]  S. Hayward Energy and entropy conservation for dynamical black holes , 2004, gr-qc/0408008.

[17]  B. Krishnan,et al.  Isolated and Dynamical Horizons and Their Applications , 2004, Living reviews in relativity.

[18]  S. Hayward Energy conservation for dynamical black holes. , 2004, Physical review letters.

[19]  M. Visser,et al.  Dirty black holes: Symmetries at stationary nonstatic horizons , 2004, gr-qc/0403026.

[20]  M. Visser,et al.  Dirty black holes: spacetime geometry and near-horizon symmetries , 2004, gr-qc/0402069.

[21]  C. Broeck,et al.  Multipole moments of isolated horizons , 2004, gr-qc/0401114.

[22]  P. Negi,et al.  Exact Solutions of Einstein's Field Equations , 2004, gr-qc/0401024.

[23]  A J M Medved,et al.  Dirty black holes: spacetime geometry and near-horizon symmetries , 2004 .

[24]  B. Krishnan,et al.  Dynamical Horizons and their Properties , 2003, gr-qc/0308033.

[25]  A. Ashtekar How Black Holes Grow , 2003, gr-qc/0306115.

[26]  A. Ashtekar,et al.  Non-minimally coupled scalar fields and isolated horizons , 2003, gr-qc/0305044.

[27]  M. Visser Essential and inessential features of Hawking radiation , 2001, hep-th/0106111.

[28]  B. Krishnan,et al.  Dynamical horizons: energy, angular momentum, fluxes, and balance laws. , 2002, Physical review letters.

[29]  A. Ashtekar,et al.  Geometry of Generic Isolated Horizons , 2001, gr-qc/0111067.

[30]  A. Ashtekar,et al.  Mechanics of rotating isolated horizons , 2001, gr-qc/0103026.

[31]  S. Hayward Black holes: new horizons , 2000, gr-qc/0008071.

[32]  S. Fairhurst,et al.  Isolated Horizons and their Applications , 2000 .

[33]  Lewandowski,et al.  Generic isolated horizons and their applications , 2000, Physical review letters.

[34]  S. Fairhurst,et al.  Isolated horizons: Hamiltonian evolution and the first law , 2000, gr-qc/0005083.

[35]  C. Doran New form of the Kerr solution , 1999, gr-qc/9910099.

[36]  A. Ashtekar,et al.  Laws governing isolated horizons: inclusion of dilaton couplings , 1999, gr-qc/9910068.

[37]  S. Mukohyama,et al.  Quasi-local first law of black-hole dynamics , 1999, gr-qc/9905085.

[38]  Shinji Mukohyama,et al.  Quasi-local first law of black-hole dynamics , 2000 .

[39]  S. Fairhurst,et al.  Mechanics of isolated horizons , 1999, gr-qc/9907068.

[40]  S. Fairhurst,et al.  Isolated horizons: a generalization of black hole mechanics , 1999 .

[41]  P. C. Vaidya The Gravitational Field of a Radiating Star , 1999 .

[42]  D. Hochberg,et al.  General dynamic wormholes and violation of the null energy condition , 1999, gr-qc/9901020.

[43]  S. Hayward,et al.  Dynamic black hole entropy , 1998, gr-qc/9810006.

[44]  S. Hayward Inequalities relating area, energy, surface gravity and charge of black holes , 1998, gr-qc/9807003.

[45]  S. Hayward Dynamic wormholes , 1998, gr-qc/9805019.

[46]  D. Hochberg,et al.  Null Energy Condition in Dynamic Wormholes , 1998, gr-qc/9802048.

[47]  D. Hochberg,et al.  Dynamic wormholes, anti-trapped surfaces, and energy conditions , 1998, gr-qc/9802046.

[48]  M. Visser,et al.  Acoustic black holes: horizons, ergospheres and Hawking radiation , 1997, gr-qc/9712010.

[49]  M. Visser Acoustic black holes: horizons, ergospheres and Hawking radiation , 1998 .

[50]  S. Mukohyama,et al.  Dynamic blackhole entropy , 1998 .

[51]  S. Hayward Unified first law of black hole dynamics and relativistic thermodynamics , 1997, gr-qc/9710089.

[52]  Hayward,et al.  Gravitational energy in spherical symmetry. , 1994, Physical review. D, Particles and fields.

[53]  H. Kleinert,et al.  On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories , 1996 .

[54]  Matt Visser,et al.  Lorentzian Wormholes: From Einstein to Hawking , 1995 .

[55]  S. Hayward Spin coefficient form of the new laws of black hole dynamics , 1994, gr-qc/9406033.

[56]  Hayward,et al.  General laws of black-hole dynamics. , 1993, Physical review. D, Particles and fields.

[57]  Visser,et al.  Dirty black holes: Entropy as a surface term. , 1993, Physical review. D, Particles and fields.

[58]  Visser Dirty black holes: Entropy versus area. , 1993, Physical review. D, Particles and fields.

[59]  J. García-Bellido Quantum Black Holes , 1993, hep-th/9302127.

[60]  Visser,et al.  Dirty black holes: Thermodynamics and horizon structure. , 1992, Physical review. D, Particles and fields.

[61]  Iyer,et al.  Trapped surfaces in the Schwarzschild geometry and cosmic censorship. , 1991, Physical review. D, Particles and fields.

[62]  Román,et al.  On the "averaged weak energy condition" and Penrose's singularity theorem. , 1988, Physical review. D, Particles and fields.

[63]  Román,et al.  Quantum stress-energy tensors and the weak energy condition. , 1986, Physical review. D, Particles and fields.

[64]  P. Bergmann,et al.  Stellar collapse without singularities , 1983 .

[65]  N. D. Birrell,et al.  Quantum fields in curved space , 2007 .

[66]  S. Hawking Erratum: ``Particle creation by black holes'' , 1976 .

[67]  S. Hawking Particle creation by black holes , 1975 .

[68]  S. Hawking,et al.  Black hole explosions? , 1974, Nature.

[69]  George F. R. Ellis,et al.  The Large Scale Structure of Space-Time , 2023 .

[70]  C. Misner,et al.  Observer time as a coordinate in relativistic spherical hydrodynamics. , 1966 .

[71]  Hilbert,et al.  Methods of Mathematical Physics, vol. II. Partial Differential Equations , 1963 .

[72]  P. C. Vaidya ‘Newtonian’ Time in General Relativity , 1953, Nature.

[73]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[74]  J. Oppenheimer,et al.  On Continued Gravitational Contraction , 1939 .

[75]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.