A Computational Analysis of Limb and Body Dimensions in Tyrannosaurus rex with Implications for Locomotion, Ontogeny, and Growth

The large theropod dinosaur Tyrannosaurus rex underwent remarkable changes during its growth from <10 kg hatchlings to >6000 kg adults in <20 years. These changes raise fascinating questions about the morphological transformations involved, peak growth rates, and scaling of limb muscle sizes as well as the body's centre of mass that could have influenced ontogenetic changes of locomotion in T. rex. Here we address these questions using three-dimensionally scanned computer models of four large, well-preserved fossil specimens as well as a putative juvenile individual. Furthermore we quantify the variations of estimated body mass, centre of mass and segment dimensions, to characterize inaccuracies in our reconstructions. These inaccuracies include not only subjectivity but also incomplete preservation and inconsistent articulations of museum skeletons. Although those problems cause ambiguity, we conclude that adult T. rex had body masses around 6000–8000 kg, with the largest known specimen (“Sue”) perhaps ∼9500 kg. Our results show that during T. rex ontogeny, the torso became longer and heavier whereas the limbs became proportionately shorter and lighter. Our estimates of peak growth rates are about twice as rapid as previous ones but generally support previous methods, despite biases caused by the usage of scale models and equations that underestimate body masses. We tentatively infer that the hindlimb extensor muscles masses, including the large tail muscle M. caudofemoralis longus, may have decreased in their relative size as the centre of mass shifted craniodorsally during T. rex ontogeny. Such ontogenetic changes would have worsened any relative or absolute decline of maximal locomotor performance. Regardless, T. rex probably had hip and thigh muscles relatively larger than any extant animal's. Overall, the limb “antigravity” muscles may have been as large as or even larger than those of ratite birds, which themselves have the most muscular limbs of any living animal.

[1]  D. Russell Tyrannosaurs from the Late Cretaceous of western Canada , 1970 .

[2]  A. Biewener,et al.  Skeletal strain patterns and growth in the emu hindlimb during ontogeny , 2007, Journal of Experimental Biology.

[3]  W. Sellers,et al.  Estimating dinosaur maximum running speeds using evolutionary robotics , 2007, Proceedings of the Royal Society B: Biological Sciences.

[4]  R. Alexander,et al.  The mechanics of hopping by kangaroos (Macropodidae) , 2009 .

[5]  J. Hutchinson,et al.  Tyrannosaur Paleobiology: New Research on Ancient Exemplar Organisms , 2010, Science.

[6]  N. Myhrvold Revisiting the Estimation of Dinosaur Growth Rates , 2013, PloS one.

[7]  P. Currie POSSIBLE EVIDENCE OF GREGARIOUS BEHAVIOR IN TYRANNOSAURIDS , 1998 .

[8]  H. Osborn Skeletal Adaptations of Ornitholestes, Struthiomimus, Tyrannosaurus , 1916 .

[9]  W. Coombs,et al.  Theoretical Aspects of Cursorial Adaptations in Dinosaurs , 1978, The Quarterly Review of Biology.

[10]  P. Barrett,et al.  SOCIAL BEHAVIOUR AND MASS MORTALITY IN THE BASAL CERATOPSIAN DINOSAUR PSITTACOSAURUS (EARLY CRETACEOUS, PEOPLE'S REPUBLIC OF CHINA) , 2007 .

[11]  Alan M. Wilson,et al.  The role of the extrinsic thoracic limb muscles in equine locomotion , 2004, Journal of anatomy.

[12]  Nicola Jones,et al.  Functional specialization and ontogenetic scaling of limb anatomy in Alligator mississippiensis , 2010, Journal of anatomy.

[13]  J. Hutchinson,et al.  Biomechanical modeling and sensitivity analysis of bipedal running ability. I. Extant taxa , 2004, Journal of morphology.

[14]  G. Paul LIMB DESIGN , FUNCTION AND RUNNING PERFORMANCE IN OSTRICH-MIMICS AND TYRANNOSAURS , 2001 .

[15]  P. Aerts,et al.  Morphometrics and inertial properties in the body segments of chimpanzees (Pan troglodytes) , 2007, Journal of anatomy.

[16]  William I. Sellers,et al.  Estimating Mass Properties of Dinosaurs Using Laser Imaging and 3D Computer Modelling , 2009, PloS one.

[17]  J. Sibbick Tyrannosaurus Rex: The Tyrant King , 1995 .

[18]  P. Sereno,et al.  THE FURCULA IN SUCHOMIMUS TENERENSIS AND TYRANNOSAURUS REX (DINOSAURIA: THEROPODA: TETANURAE) , 2007, Journal of Paleontology.

[19]  A. Biewener Biomechanical consequences of scaling , 2005, Journal of Experimental Biology.

[20]  W. Sellers,et al.  Sensitivity Analysis in Evolutionary Robotic Simulations of Bipedal Dinosaur Running , 2010 .

[21]  P. Dodson Functional and ecological significance of relative growth in Alligator , 2009 .

[22]  John R Hutchinson,et al.  Pelvic and hindlimb musculature of Tyrannosaurus rex (Dinosauria: Theropoda) , 2002, Journal of morphology.

[23]  P. Christiansen,et al.  Mass Prediction in Theropod Dinosaurs , 2004 .

[24]  Alan M. Wilson,et al.  Functional anatomy of the cheetah (Acinonyx jubatus) hindlimb , 2011, Journal of anatomy.

[25]  T. Williamson,et al.  Diversity of late Maastrichtian Tyrannosauridae (Dinosauria: Theropoda) from western North America , 2004 .

[26]  Jonas Rubenson,et al.  Adaptations for economical bipedal running: the effect of limb structure on three-dimensional joint mechanics , 2011, Journal of The Royal Society Interface.

[27]  G. C. Packard,et al.  Allometric equations for predicting body mass of dinosaurs: a comment on Cawley & Janacek (2010) , 2010 .

[28]  R. Alexander,et al.  Mechanics of running by quail (Coturnix) , 2009 .

[29]  M. Norell,et al.  Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs , 2004, Nature.

[30]  Joseph E. Peterson,et al.  FACE BITING ON A JUVENILE TYRANNOSAURID AND BEHAVIORAL IMPLICATIONS , 2009 .

[31]  D. Carrier,et al.  Skeletal growth and function in the California gull (Larus californicus) , 1990 .

[32]  K. Carlson Muscle architecture of the common chimpanzee (Pan troglodytes): perspectives for investigating chimpanzee behavior , 2006, Primates.

[33]  C. Brochu,et al.  Osteology of Tyrannosaurus Rex: Insights from a nearly complete Skeleton and High-Resolution Computed Tomographic Analysis of the Skull , 2003 .

[34]  S. Reilly Sprawling Locomotion in the Lizard Sceloporus clarkii: Speed Modulation of Motor Patterns in a Walking Trot , 1998, Brain, Behavior and Evolution.

[35]  William I. Sellers,et al.  HOW BIG WAS 'BIG AL'? QUANTIFYING THE EFFECT OF SOFT TISSUE AND OSTEOLOGICAL UNKNOWNS ON MASS PREDICTIONS FOR ALLOSAURUS (DINOSAURIA:THEROPODA) , 2009 .

[36]  Stephen M. Gatesy,et al.  Caudofemoral musculature and the evolution of theropod locomotion , 1990, Paleobiology.

[37]  J. Hutchinson,et al.  The locomotor kinematics of Asian and African elephants: changes with speed and size , 2006, Journal of Experimental Biology.

[38]  N. Heglund,et al.  Energetics and mechanics of terrestrial locomotion. , 1982, Annual review of physiology.

[39]  W. Kohlberger Problems in Vertebrate Evolution , 1978 .

[40]  P. Weyand,et al.  Faster top running speeds are achieved with greater ground forces not more rapid leg movements. , 2000, Journal of applied physiology.

[41]  A. Russell,et al.  Craniocervical feeding dynamics of Tyrannosaurus rex , 2007, Paleobiology.

[42]  W. Herzog Skeletal muscle mechanics: from mechanisms to function , 2001 .

[43]  Richard L. Lieber,et al.  Skeletal Muscle Structure, Function, and Plasticity , 2009 .

[44]  J. Horner,et al.  Age and growth dynamics of Tyrannosaurus rex† , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[45]  Alan M. Wilson,et al.  Functional specialisation of the pelvic limb of the hare (Lepus europeus) , 2007, Journal of anatomy.

[46]  G. Cawley,et al.  On allometric equations for predicting body mass of dinosaurs , 2010 .

[47]  Vivian Allen,et al.  Variation in Center of Mass Estimates for Extant Sauropsids and its Importance for Reconstructing Inertial Properties of Extinct Archosaurs , 2009, Anatomical record.

[48]  Alan M. Wilson,et al.  Ontogenetic scaling of locomotor kinetics and kinematics of the ostrich (Struthio camelus) , 2010, Journal of Experimental Biology.

[49]  H. Buchner,et al.  Inertial properties of Dutch Warmblood horses. , 1997, Journal of biomechanics.

[50]  John R. Hutchinson,et al.  The evolutionary continuum of limb function from early theropods to birds , 2009, Naturwissenschaften.

[51]  A. Wilson,et al.  Functional specialisation of the thoracic limb of the hare (Lepus europeus) , 2007, Journal of anatomy.

[52]  R. M. Alexander,et al.  Mechanics of posture and gait of some large dinosaurs , 1985 .

[53]  Mariano Garcia,et al.  Tyrannosaurus was not a fast runner , 2002, Nature.

[54]  P. Aerts,et al.  Morphology and morphometrics of the appendicular musculature in geckoes with different locomotor habits (Lepidosauria) , 1999, Zoomorphology.

[55]  M. Norell,et al.  Was Dinosaurian Physiology Inherited by Birds? Reconciling Slow Growth in Archaeopteryx , 2009, PloS one.

[56]  John R Hutchinson,et al.  Biomechanical modeling and sensitivity analysis of bipedal running ability. I. Extant taxa , 2004, Journal of morphology.

[57]  R. McN. Alexander,et al.  Allometry of the limbs of antelopes (Bovidae) , 2009 .

[58]  Alan M. Wilson,et al.  Functional anatomy of the cheetah (Acinonyx jubatus) forelimb , 2011, Journal of anatomy.

[59]  Brent H. Breithaupt,et al.  Dynamics of Dinosaurs and Other Extinct Giants, R. McNeill Alexander, R. McNeill Alexander. Columbia University Press, New York (1989), 167, Price $30.00 , 1990 .

[60]  R. McNeill Alexander,et al.  Principles of Animal Locomotion , 2002 .

[61]  J. Hutchinson,et al.  Constraint-Based Exclusion of Limb Poses for Reconstructing Theropod Dinosaur Locomotion , 2009 .

[62]  A. Garrod Animal Locomotion , 1874, Nature.

[63]  David Rogers Mcsp Skeletal Muscle Structure, Function and Plasticity , 2003 .

[64]  J. Thomason,et al.  Functional Morphology in Vertebrate Paleontology , 1998 .

[65]  Thomas D. Carr,et al.  Craniofacial ontogeny in Tyrannosauridae (Dinosauria, Coelurosauria) , 1999 .

[66]  S. Yerby,et al.  Dinosaurian growth patterns and rapid avian growth rates , 2001, Nature.

[67]  D. Carrier Postnatal ontogeny of the musculo-skeletal system in the Black-tailed jack rabbit (Lepus californicus) , 2009 .

[68]  P. Currie,et al.  Tyrannosaur Life Tables: An Example of Nonavian Dinosaur Population Biology , 2006, Science.

[69]  Victor Ng-Thow-Hing,et al.  A 3D interactive method for estimating body segmental parameters in animals: application to the turning and running performance of Tyrannosaurus rex. , 2007, Journal of theoretical biology.

[70]  F. Seebacher,et al.  A NEW METHOD TO CALCULATE ALLOMETRIC LENGTH-MASS RELATIONSHIPS OF DINOSAURS , 2001 .

[71]  E. Lamm,et al.  Sizing the Jurassic theropod dinosaur Allosaurus: Assessing growth strategy and evolution of ontogenetic scaling of limbs , 2006, Journal of morphology.

[72]  P. Makovicky,et al.  Limb bone allometry during postnatal ontogeny in non‐avian dinosaurs , 2010, Journal of anatomy.

[73]  P. Currie,et al.  Allometric growth in tyrannosaurids (Dinosauria: Theropoda) from the Upper Cretaceous of North America and Asia , 2003 .

[74]  Richard W Blob,et al.  Hindlimb function in the alligator: integrating movements, motor patterns, ground reaction forces and bone strain of terrestrial locomotion , 2005, Journal of Experimental Biology.

[75]  N. Heglund,et al.  Energetics and mechanics of terrestrial locomotion. II. Kinetic energy changes of the limbs and body as a function of speed and body size in birds and mammals. , 1982, The Journal of experimental biology.

[76]  R. Ricklefs Tyrannosaur ageing , 2007, Biology Letters.

[77]  A. Biewener Scaling body support in mammals: limb posture and muscle mechanics. , 1989, Science.

[78]  Peter G. Weyand,et al.  Running performance has a structural basis , 2005, Journal of Experimental Biology.

[79]  A. Russell,et al.  The Tyrannosaurid metatarsus: Bone strain and inferred ligament function , 2002 .

[80]  Wilhelm Schauder Anatomische und metrische Untersuchungen über die Muskeln der Schultergliedmaße des Pferdes , 1924, Zeitschrift für Anatomie und Entwicklungsgeschichte.

[81]  A. Hall-Martin,et al.  Long‐bone circumference and weight in mammals, birds and dinosaurs , 2009 .

[82]  Stance and gait in the flesh-eating dinosaur Tyrannosaurus , 1970 .

[83]  D. Carrier Ontogenetic Limits on Locomotor Performance , 1996, Physiological Zoology.

[84]  Eric Snively,et al.  Kinematic model of tyrannosaurid (dinosauria: theropoda) arctometatarsus function , 2003, Journal of morphology.

[85]  J. Farlow,et al.  Body mass, bone “strength indicator,” and cursorial potential of Tyrannosaurus rex , 1995 .

[86]  Anthony Herrel,et al.  Ontogeny of Performance in Vertebrates* , 2005, Physiological and Biochemical Zoology.

[87]  P. Currie,et al.  The Tail of Tyrannosaurus: Reassessing the Size and Locomotive Importance of the M. caudofemoralis in Non‐Avian Theropods , 2011, Anatomical record.

[88]  A. Romer,et al.  XIX .-THE PELVIC MUSCULATURE OF SAURISCHIAN DINOSAURS , 2022 .

[89]  D. Henderson,et al.  Estimating the masses and centers of mass of extinct animals by 3-D mathematical slicing , 1999, Paleobiology.

[90]  R. Marsh,et al.  The cost of running uphill: linking organismal and muscle energy use in guinea fowl (Numida meleagris) , 2006, Journal of Experimental Biology.

[91]  G. Erickson,et al.  Growth curve of Psittacosaurus mongoliensis Osborn (Ceratopsia: Psittacosauridae) inferred from long bone histology , 2000 .

[92]  Alan M. Wilson,et al.  Biomechanics: No force limit on greyhound sprint speed , 2005, Nature.

[93]  K. Carpenter Dinosaur Systematics: Variation in Tyrannosaurus rex , 1990 .

[94]  M. Carrano,et al.  Implications of limb bone scaling, curvature and eccentricity in mammals and non‐avian dinosaurs , 2001 .

[95]  PROBLEMS IN VERTEBRATE EVOLUTION , 1978 .

[96]  P. Aerts,et al.  Functional morphology of the hindlimb musculature of the black-billed magpie, Pica pica (Aves, Corvidae) , 1998, Zoomorphology.

[97]  J. Hutchinson,et al.  The effects of selective breeding on the architectural properties of the pelvic limb in broiler chickens: a comparative study across modern and ancestral populations , 2010, Journal of anatomy.

[98]  D. Henderson,et al.  Tyrannosaurus en pointe: allometry minimized rotational inertia of large carnivorous dinosaurs , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[99]  R C Payne,et al.  Functional anatomy and muscle moment arms of the pelvic limb of an elite sprinting athlete: the racing greyhound (Canis familiaris) , 2008, Journal of anatomy.

[100]  J. Hutchinson,et al.  Analysis of hindlimb muscle moment arms in Tyrannosaurus rex using a three-dimensional musculoskeletal computer model: implications for stance, gait, and speed , 2005, Paleobiology.

[101]  R C Payne,et al.  Functional specialisation of pelvic limb anatomy in horses (Equus caballus) , 2005, Journal of anatomy.

[102]  W. Sellers,et al.  How big was ‘Big Al’. , 2010 .

[103]  R C Payne,et al.  Functional anatomy and muscle moment arms of the thoracic limb of an elite sprinting athlete: the racing greyhound (Canis familiaris) , 2008, Journal of anatomy.

[104]  P. Currie,et al.  Dinosaur Systematics: Approaches and Perspectives , 1992 .

[105]  Michael Williams,et al.  Nanotyrannus, a new genus of pygmy tyrannosaur, from the Latest Cretaceous of Montana , 1988 .

[106]  S. Tarsitano Stance and gait in theropod dinosaurs , 1983 .

[107]  M. Hildebrand,et al.  Energy of the oscillating legs of a fast‐moving cheetah, pronghorn, jackrabbit, and elephant , 1985, Journal of morphology.

[108]  M. Carrano What, if anything, is a cursor? Categories versus continua for determining locomotor habit in mammals and dinosaurs , 1999 .

[109]  Tyrannosaurus rex Redux: Tyrannosaurus Tail Portrayals , 2011, Anatomical record.

[110]  B. Jayne,et al.  Size matters: ontogenetic variation in the three-dimensional kinematics of steady-speed locomotion in the lizard Dipsosaurus dorsalis. , 2000, The Journal of experimental biology.