Sensitivity analysis methods for a crop-mix problem in linear programming

ZusammenfassungDie vorliegende Arbeit behandelt vier Methoden zur Untersuchung der Sensitivität der optimalen Lösung eines „crop-mix“-Problems der linearen Programmierung: a) „variability analysis“ für zweit- und drittbeste Lösungen, b) „perturbation analysis“ der optimalen Basis, c) das „sensitivity-coefficient“-Verfahren und d) die „fractile-criterion“-Methode, durch die ein bestimmter Teil der Gewinnverteilung maximiert wird. Ziel der Arbeit ist ein Vergleich der Methoden bezüglich ihrer Anwendung auf empirische ökonomische Probleme.SummaryFour different methods of analyzing the sensitivity of the optimal solution of a crop-mix problem in linear programming, e. g., (a) variability analysis for second-best and third-best solutions, (b) perturbation analysis around a specific optimal basis, (c) the sensitivity coefficient approach, and (d) the method of fractile criterion by which a specified fractile of the distribution of profits is maximized, are investigated here. The objective is to compare the different operational methods of sensitivity analysis applied to an empirical economic problem.

[1]  C. R. Rao,et al.  Linear Statistical Inference and its Applications , 1968 .

[2]  András Prékopa,et al.  ON THE PROBABILITY DISTRIBUTION OF THE OPTIMUM OF A RANDOM LINEAR PROGRAM , 1966 .

[3]  William Palin Elderton Frequency curves and correlation , 1928 .

[4]  T. L. Saaty The Number of Vertices of a Polyhedron , 1955 .

[5]  M. A. Hanson ERRORS AND STOCHASTIC VARIATIONS IN LINEAR PROGRAMMING , 1960 .

[6]  Thomas S. Ferguson,et al.  Rules for Rejection of Outliers , 1961 .

[7]  K. Pillai,et al.  ON THE DISTRIBUTION OF THE RATIO OF THE iTH OBSERVATION' IN AN ORDERED SAMPLE FROM A NORMAL POPULATION TO AN INDEPENDENT ESTIMATE OF THE STANDARD DEVIATION , 1954 .

[8]  A. Roy Safety first and the holding of assetts , 1952 .

[9]  G. Barrie Wetherill,et al.  Sequential methods in statistics , 1967 .

[10]  Bernard Bereanu,et al.  On stochastic linear programming. The laplace transform of the distribution of the optimum and applications , 1966 .

[11]  S. Moriguti Extremal properties of extreme value distributions , 1951 .

[12]  J. K. Sengupta The Stability of Truncated Solutions of Stochastic Linear Programming , 1966 .

[14]  H. Markowitz Portfolio Selection: Efficient Diversification of Investments , 1971 .

[15]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[16]  Madan Mohan Babbar Statistical approach in planning production programs for interdependent activities , 1953 .

[17]  S. Kataoka A Stochastic Programming Model , 1963 .

[18]  A. Charnes,et al.  Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints , 1963 .

[19]  Jerome Bracken,et al.  STATISTICAL DECISION ANALYSIS OF STOCHASTIC LINEAR PROGRAMMING PROBLEMS. , 1966 .

[20]  J. K. Sengupta,et al.  A Fractile Approach to Linear Programming Under Risk , 1970 .