Automatic Segmentation of Unstained Living Cells in Bright-Field Microscope Images

The automatic subcellular localisation of proteins in living cells is a critical step in determining their function. The evaluation of fluorescence images constitutes a common method of localising these proteins. For this, additional knowledge about the position of the considered cells within an image is required. In an automated system, it is advantageous to recognise these cells in bright-field microscope images taken in parallel with the regarded fluorescence micrographs. Unfortunately, currently available cell recognition methods are only of limited use within the context of protein localisation, since they frequently require microscopy techniques that enable images of higher contrast (e.g. phase contrast microscopy or additional dyes) or can only be employed with too low magnifications. Therefore, this article introduces a novel approach to the robust automatic recognition of unstained living cells in bright-field microscope images. Here, the focus is on the automatic segmentation of cells.

[1]  Marcel van Herk A fast algorithm for local minimum and maximum filters on rectangular and octagonal kernels , 1992, Pattern Recognit. Lett..

[2]  J J Vaquero,et al.  Applying watershed algorithms to the segmentation of clustered nuclei. , 1998, Cytometry.

[3]  Xiaohua Chen,et al.  Application of some valid methods in cell segmentation , 2001, International Symposium on Multispectral Image Processing and Pattern Recognition.

[4]  Xi Long,et al.  Automatic detection of unstained viable cells in bright field images using a support vector machine with an improved training procedure , 2006, Comput. Biol. Medicine.

[5]  Vannary Meas-Yedid,et al.  Segmentation and tracking of migrating cells in videomicroscopy with parametric active contours: a tool for cell-based drug testing , 2002, IEEE Transactions on Medical Imaging.

[6]  Philippe Van Ham,et al.  Tracking of migrating cells under phase-contrast video microscopy with combined mean-shift processes , 2005, IEEE Transactions on Medical Imaging.

[7]  Peter Hastreiter,et al.  Bildverarbeitung für die Medizin 2003 , 2003 .

[8]  L. Cohen NOTE On Active Contour Models and Balloons , 1991 .

[9]  Andrew W. Fitzgibbon,et al.  Direct Least Square Fitting of Ellipses , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[11]  M. Barcellos-Hoff,et al.  Geometric approach to segmentation and protein localization in cell culture assays , 2007 .

[12]  A. Poustka,et al.  A microscope‐based screening platform for large‐scale functional protein analysis in intact cells , 2003, FEBS letters.

[13]  Franz Kummert,et al.  Classification of Segmented Regions in Brightfield Microscope Images , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[14]  Franz Kummert,et al.  Subcellular Localisation of Proteins in Living Cells Using a Genetic Algorithm and an Incremental Neural Network , 2007, Bildverarbeitung für die Medizin.

[15]  F. Kummert,et al.  Recognition of Unstained Live Drosophila Cells in Microscope Images , 2007, International Machine Vision and Image Processing Conference (IMVIP 2007).

[16]  Petra Perner,et al.  Case-based object recognition for airborne fungi recognition , 2006, Artif. Intell. Medicine.

[17]  Kenong Wu,et al.  Live cell image segmentation , 1995, IEEE Transactions on Biomedical Engineering.

[18]  Heiko Wersing,et al.  A neural network architecture for automatic segmentation of fluorescence micrographs , 2002, ESANN.

[19]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[20]  Xiang Chen,et al.  Interpretation of Protein Subcellular Location Patterns in 3D Images Across Cell Types and Resolutions , 2007, BIRD.

[21]  Pierre Soille,et al.  Recursive Implementation of Erosions and Dilations Along Discrete Lines at Arbitrary Angles , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Robert F. Murphy,et al.  Robust Numerical Features for Description and Classification of Subcellular Location Patterns in Fluorescence Microscope Images , 2003, J. VLSI Signal Process..

[23]  R. Tsien,et al.  green fluorescent protein , 2020, Catalysis from A to Z.

[24]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[25]  Frank B. Dazzo,et al.  Computer-Assisted Segmentation of Bacteria in Color Micrographs , 2004 .

[26]  Scott T. Acton,et al.  Tracking leukocytes in vivo with shape and size constrained active contours , 2002, IEEE Transactions on Medical Imaging.

[27]  F Guilak,et al.  A method for quantifying cell size from differential interference contrast images: validation and application to osmotically stressed chondrocytes , 2002, Journal of microscopy.

[28]  Christian Münzenmayer,et al.  Segmentierung von überlappenden Zellen in Fluoreszenz- und Durchlichtaufnahmen , 2003, Bildverarbeitung für die Medizin.

[29]  Pierre Soille,et al.  Morphological Image Analysis , 1999 .

[30]  Franz Kummert,et al.  Aktive Konturen für die robuste Lokalisation von Zellen , 2005, Bildverarbeitung für die Medizin.

[31]  Brian C. Lovell,et al.  Classification of cervical cell nuclei using morphological segmentation and textural feature extraction , 1994, Proceedings of ANZIIS '94 - Australian New Zealnd Intelligent Information Systems Conference.

[32]  Josef Kittler,et al.  Minimum error thresholding , 1986, Pattern Recognit..

[33]  Hans-Peter Meinzer,et al.  Bildverarbeitung für die Medizin 2005 , 2005 .

[34]  H. Ritter,et al.  Automatic Recognition of Muscle-invasive T-lymphocytes Expressing Dipeptidyl-peptidase IV (CD26) and Analysis of the Associated Cell Surface Phenotypes , 2002 .

[35]  Xi Long,et al.  Effective automatic recognition of cultured cells in bright field images using fisher's linear discriminant preprocessing , 2005, Image Vis. Comput..

[36]  Mubarak Shah,et al.  A Fast algorithm for active contours and curvature estimation , 1992, CVGIP Image Underst..

[37]  D. Young,et al.  Cell Identification in Differential Interference , 1996, BMVC.

[38]  Hans-Peter Meinzer,et al.  Bildverarbeitung für die Medizin 2007, Algorithmen, Systeme, Anwendungen, Proceedings des Workshops vom 25.-27. März 2007 in München , 2007, Bildverarbeitung für die Medizin.