Some Tractable Instances of Interval Data Minmax Regret Problems: Bounded Distance from Triviality

This paper focuses on tractable instances of interval data minmax regret graph problems. More precisely, we provide polynomial and pseudopolynomial algorithms for sets of particular instances of the interval data minmax regret versions of the shortest path, minimum spanning tree and weighted (bipartite) perfect matching problems. These sets are defined using a parameter that measures the distance from well known solvable instances. Tractable cases occur when the parameter is bounded by a constant. Two kinds of parameters are investigated, measuring either the distance from special weight structures or the distance from special graph structures.

[1]  Shlomo Moran,et al.  Non Deterministic Polynomial Optimization Problems and their Approximations , 1977, Theoretical Computer Science.

[2]  Pascal Van Hentenryck,et al.  On the complexity of the robust spanning tree problem with interval data , 2004, Oper. Res. Lett..

[3]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[4]  Adam Kasperski,et al.  The robust shortest path problem in series-parallel multidigraphs with interval data , 2006, Oper. Res. Lett..

[5]  Albert Atserias,et al.  On digraph coloring problems and treewidth duality , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[6]  Adam Kasperski,et al.  An approximation algorithm for interval data minmax regret combinatorial optimization problems , 2006, Inf. Process. Lett..

[7]  Claude Berge,et al.  Graphs and Hypergraphs , 2021, Clustering.

[8]  Igor Averbakh,et al.  On the complexity of a class of combinatorial optimization problems with uncertainty , 2001, Math. Program..

[9]  Shlomo Moran,et al.  Non Deterministic Polynomial Optimization Problems and their Approximations , 1977, Theor. Comput. Sci..

[10]  Michael A. Langston,et al.  Parameterized and Exact Computation, Second International Workshop, IWPEC 2006, Zürich, Switzerland, September 13-15, 2006, Proceedings , 2006, IWPEC.

[11]  Igor Averbakh,et al.  Interval data minmax regret network optimization problems , 2004, Discret. Appl. Math..

[12]  Eugene L. Lawler,et al.  The recognition of Series Parallel digraphs , 1979, SIAM J. Comput..

[13]  Umberto Bertelè,et al.  Nonserial Dynamic Programming , 1972 .

[14]  Olivier Spanjaard,et al.  Some tractable instances of interval data minmax regret problems , 2008, Oper. Res. Lett..

[15]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[16]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[17]  J. Kamburowski,et al.  OPTIMAL REDUCTION OF TWO-TERMINAL DIRECTED ACYCLIC GRAPHS * , 1992 .

[18]  Michel Minoux,et al.  Graphs and Algorithms , 1984 .

[19]  A. Kasperski Minimizing maximal regret in the linear assignment problems with interval costs , .

[20]  Rolf Niedermeier,et al.  A Structural View on Parameterizing Problems: Distance from Triviality , 2004, IWPEC.