Narrow-bandwidth sensing of high-frequency fields with continuous dynamical decoupling

[1]  A. M. Waeber,et al.  Quantum sensing of weak radio-frequency signals by pulsed Mollow absorption spectroscopy , 2017, Nature Communications.

[2]  Simon Schmitt,et al.  Qudi: A modular python suite for experiment control and data processing , 2016, SoftwareX.

[3]  Hybrid continuous dynamical decoupling: a photon-phonon doubly dressed spin , 2016, 1611.01515.

[4]  J. P. Dehollain,et al.  A dressed spin qubit in silicon. , 2016, Nature nanotechnology.

[5]  Diamond Radio Receiver: Nitrogen-Vacancy Centers as Fluorescent Transducers of Microwave Signals , 2016 .

[6]  F. Jelezko,et al.  Fully robust qubit in atomic and molecular three-level systems , 2016, 1609.07812.

[7]  D. Budker,et al.  Detection of nanoscale electron spin resonance spectra demonstrated using nitrogen-vacancy centre probes in diamond , 2016, Nature Communications.

[8]  A Retzker,et al.  Ultrasensitive Magnetometer using a Single Atom. , 2014, Physical review letters.

[9]  S. Pezzagna,et al.  Wide bandwidth instantaneous RF spectrum analyzer based on nitrogen vacancy centers in diamond , 2015, 1509.01395.

[10]  Andrea Zappe,et al.  Relaxometry and Dephasing Imaging of Superparamagnetic Magnetite Nanoparticles Using a Single Qubit. , 2015, Nano letters.

[11]  D. Budker,et al.  Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond , 2015, 1505.00636.

[12]  Winfried K. Hensinger,et al.  Multi-qubit gate with trapped ions for microwave and laser-based implementation , 2015, 1504.02960.

[13]  M. Lukin,et al.  Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit , 2015, Science.

[14]  D. Rugar,et al.  Spurious harmonic response of multipulse quantum sensing sequences , 2014, 1412.5768.

[15]  D. Golter,et al.  Protecting a solid-state spin from decoherence using dressed spin states. , 2014, Physical review letters.

[16]  Robert J. Marks,et al.  Solving the Spectrum Crisis: Intelligent, Reconfigurable Microwave Transmitter Amplifiers for Cognitive Radar , 2014, IEEE Microwave Magazine.

[17]  S. Bennett,et al.  All-optical sensing of a single-molecule electron spin. , 2013, Nano letters.

[18]  E. Riis Optical Magnetometry , 2013 .

[19]  N Aharon,et al.  General scheme for the construction of a protected qubit subspace. , 2013, Physical review letters.

[20]  D Budker,et al.  Solid-state electronic spin coherence time approaching one second , 2012, Nature Communications.

[21]  M. Plenio,et al.  Long-lived driven solid-state quantum memory , 2012, 1206.4430.

[22]  Ya Wang,et al.  Coherence-protected quantum gate by continuous dynamical decoupling in diamond. , 2012, Physical review letters.

[23]  R. Hanson,et al.  Comparison of dynamical decoupling protocols for a nitrogen-vacancy center in diamond , 2012, 1202.0462.

[24]  M. Plenio,et al.  Robust dynamical decoupling with concatenated continuous driving , 2011, 1111.0930.

[25]  M. B. Plenio,et al.  Robust trapped-ion quantum logic gates by continuous dynamical decoupling , 2012 .

[26]  A Retzker,et al.  Electron-mediated nuclear-spin interactions between distant nitrogen-vacancy centers. , 2011, Physical review letters.

[27]  M. B. Plenio,et al.  Quantum gates and memory using microwave-dressed states , 2011, Nature.

[28]  Dieter Suter,et al.  Robust dynamical decoupling for quantum computing and quantum memory. , 2011, Physical review letters.

[29]  Anna Keselman,et al.  Single-ion quantum lock-in amplifier , 2011, Nature.

[30]  Fedor Jelezko,et al.  Dynamical Decoupling of a single electron spin at room temperature , 2010, 1008.1953.

[31]  E. Hahn,et al.  Spin Echoes , 2011 .

[32]  D. Cory,et al.  Robust decoupling techniques to extend quantum coherence in diamond. , 2010, Physical review letters.

[33]  R Hanson,et al.  Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath , 2010, Science.

[34]  Wen Yang,et al.  Preserving qubit coherence by dynamical decoupling , 2010, 1007.0623.

[35]  Gershon Kurizki,et al.  Bath-optimized minimal-energy protection of quantum operations from decoherence. , 2010, Physical review letters.

[36]  Xing Rong,et al.  Preserving electron spin coherence in solids by optimal dynamical decoupling , 2009, Nature.

[37]  Michael J. Biercuk,et al.  Optimized dynamical decoupling in a model quantum memory , 2008, Nature.

[38]  M. V. Gurudev Dutt,et al.  Strong Magnetic Coupling Between an Electronic Spin Qubit and a Mechanical Resonator , 2008, 0806.3606.

[39]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[40]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[41]  Daniel A. Lidar,et al.  Optimal dynamical decoherence control of a qubit. , 2008, Physical review letters.

[42]  D. Budker,et al.  Optical magnetometry - eScholarship , 2006, physics/0611246.

[43]  F. F. Fanchini,et al.  Continuously decoupling single-qubit operations from a perturbing thermal bath of scalar bosons , 2006, quant-ph/0611188.

[44]  G. Uhrig Keeping a quantum bit alive by optimized pi-pulse sequences. , 2006, Physical review letters.

[45]  Daniel A. Lidar,et al.  Fault-tolerant quantum dynamical decoupling , 2004, 2005 Quantum Electronics and Laser Science Conference.

[46]  Esteban Anoardo,et al.  Field-Cycling NMR Relaxometry , 2004 .

[47]  F. Jelezko,et al.  Observation of coherent oscillations in a single electron spin. , 2004, Physical review letters.

[48]  F. Jelezko,et al.  Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. , 2004, Physical review letters.

[49]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[50]  Moore,et al.  Quantum projection noise: Population fluctuations in two-level systems. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[51]  Physical Review Letters 63 , 1989 .

[52]  N. Sheppard Progress in Nuclear Magnetic Resonance Spectroscopy Vol 4 , 1970 .

[53]  S. Meiboom,et al.  Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times , 1958 .

[54]  E. Purcell,et al.  Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments , 1954 .