Improving the performance of oxygen transport membranes in simulated oxy-fuel power plant conditions by catalytic surface enhancement

[1]  J. M. Serra,et al.  Enhancing oxygen permeation through Fe2NiO4–Ce0.8Tb0.2O2−δ composite membranes using porous layers activated with Pr6O11 nanoparticles , 2018 .

[2]  P. Hendriksen,et al.  Stability and performance of robust dual-phase (ZrO2)0.89(Y2O3)0.01(Sc2O3)0.10-Al0.02Zn0.98O1.01 oxygen transport membranes , 2017 .

[3]  J. M. Serra,et al.  Catalytic Oxide‐Ion Conducting Materials for Surface Activation of Ba0.5Sr0.5Co0.8Fe0.2O3‐δ Membranes , 2017 .

[4]  J. M. Serra,et al.  Tailoring Electrocatalytic Properties of Solid Oxide Fuel Cell Composite Cathodes Based on (La0.8Sr0.2)0.95MnO3+δ and Doped Cerias Ce1–xLnxO2–δ (Ln=Gd, La, Er, Pr, Tb and x=0.1–0.2) , 2017 .

[5]  P. Hendriksen,et al.  Oxygen permeation flux through 10Sc1YSZ-MnCo2O4 asymmetric membranes prepared by two-step sintering , 2016 .

[6]  K. Engelbrecht,et al.  Joining of ceramic Ba0.5Sr0.5Co0.8Fe0.2O3 membranes for oxygen production to high temperature alloys , 2016 .

[7]  K. Wiik,et al.  Oxygen permeation in symmetric and asymmetric La0.2Sr0.8Fe0.8Ta0.2O3 - δ membranes , 2016 .

[8]  J. M. Serra,et al.  Dual-Phase Oxygen Transport Membranes for Stable Operation in Environments Containing Carbon Dioxide and Sulfur Dioxide. , 2015, ChemSusChem.

[9]  J. M. Serra,et al.  Boosting the oxygen reduction reaction mechanisms in IT-SOFC cathodes by catalytic functionalization , 2015 .

[10]  F. Tietz,et al.  Towards the fabrication of La0.98−xSrxCo0.2Fe0.8O3−δ perovskite-type oxygen transport membranes , 2014 .

[11]  J. M. Serra,et al.  Enhanced oxygen separation through robust freeze-cast bilayered dual-phase membranes. , 2014, ChemSusChem.

[12]  V. Kharton,et al.  Oxygen exchange, thermochemical expansion and cathodic behavior of perovskite-like Sr0.7Ce0.3MnO3-δ , 2014 .

[13]  A. Thursfield,et al.  The impact of sulfur contamination on the performance of La0.6Sr0.4Co0.2Fe0.8O3 − δ oxygen transport membranes , 2014 .

[14]  V. Kharton,et al.  Analysis of electric properties of ZrO2-Y2O3 single crystals using teraherz IR and impedance spectroscopy techniques , 2014, Russian Journal of Electrochemistry.

[15]  X. Tan,et al.  Poisoning effect of SO2 on the oxygen permeation behavior of La0.6Sr0.4Co0.2Fe0.8O3−δ perovskite hollow fiber membranes , 2014 .

[16]  J. M. Serra,et al.  Fast Oxygen Separation Through SO2- and CO2-Stable Dual-Phase Membrane Based on NiFe2O4–Ce0.8Tb0.2O2-δ , 2013 .

[17]  U. Henriksen,et al.  Integration of mixed conducting membranes in an oxygen-steam biomass gasification process , 2013 .

[18]  Haihui Wang,et al.  Enhancement of oxygen permeation through U-shaped K2NiF4-type oxide hollow fiber membranes by surface modifications , 2013 .

[19]  J. M. Serra,et al.  Ethylene production by ODHE in catalytically modified Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ) membrane reactors. , 2012, ChemSusChem.

[20]  J. D. Costa,et al.  High performance yttrium-doped BSCF hollow fibre membranes , 2012 .

[21]  Henrik Lund Frandsen,et al.  Optimization of the strength of SOFC anode supports , 2012 .

[22]  X. Tan,et al.  Oxygen permeation behavior of La0.6Sr0.4Co0.8Fe0.2O3 hollow fibre membranes with highly concentrated , 2012 .

[23]  R. Song,et al.  Preparation and properties of a MnCo2O4 for ceramic interconnect of solid oxide fuel cell via glycine nitrate process , 2011 .

[24]  M. Schulz,et al.  Assessment of CO 2 stability and oxygen flux of oxygen permeable membranes , 2011 .

[25]  José M. Serra,et al.  Ultrahigh oxygen permeation flux through supported Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes , 2011 .

[26]  N. Bonanos,et al.  High Performance Cathodes for Solid Oxide Fuel Cells Prepared by Infiltration of La0.6Sr0.4CoO3−δ into Gd-Doped Ceria , 2011 .

[27]  J. M. Serra,et al.  Study of the Transport Properties of the Mixed Ionic Electronic Conductor Ce1−xTbxO2−δ + Co (x = 0.1, 0.2) and Evaluation As Oxygen-Transport Membrane , 2011 .

[28]  Stefan Engels,et al.  Oxygen permeation and stability investigations on MIEC membrane materials under operating conditions , 2011 .

[29]  Subhash Bhatia,et al.  Oxygen separation from air using ceramic-based membrane technology for sustainable fuel production and power generation , 2011 .

[30]  S. Bhatia,et al.  Current status of ceramic-based membranes for oxygen separation from air. , 2010, Advances in colloid and interface science.

[31]  Michael Modigell,et al.  Gas separation membranes for zero-emission fossil power plants: MEM-BRAIN , 2010 .

[32]  A. Safekordi,et al.  Comparison of oxygen permeation through some perovskite membranes synthesized with EDTNAD , 2010 .

[33]  Xiaoyao Tan,et al.  Pilot-scale production of oxygen from air using perovskite hollow fibre membranes , 2010 .

[34]  Chun Xiang Lin,et al.  Ceramic membranes for gas processing in coal gasification , 2010 .

[35]  X. Tan,et al.  Improvement of the oxygen permeation through perovskite hollow fibre membranes by surface acid-modification , 2009 .

[36]  Michael Müller,et al.  Corrosion of Ba1−xSrxCo1−yFeyO3−δ and La0.3Ba0.7Co0.2Fe0.8O3−δ materials for oxygen separating membranes under Oxycoal conditions , 2009 .

[37]  W. Sitte,et al.  Stability of the SOFC Cathode Material ( Ba , Sr ) ( Co , Fe ) O3 − δ in CO2-Containing Atmospheres , 2008 .

[38]  T. M. Mccoy Extension of the master sintering curve for constant heating rate modeling , 2008 .

[39]  Zongping Shao,et al.  Properties and performance of A-site deficient (Ba0.5Sr0.5)1−xCo0.8Fe0.2O3−δ for oxygen permeating membrane , 2007 .

[40]  A. Petric,et al.  Electrical Conductivity and Thermal Expansion of Spinels at Elevated Temperatures , 2007 .

[41]  A. Feldhoff,et al.  Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes , 2007 .

[42]  S. Chan,et al.  Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte , 2002 .

[43]  Zongping Shao,et al.  Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane , 2000 .

[44]  J. Kilner,et al.  Degradation of La0.6Sr0.4Fe0.8Co0.2 O 3 − δ in Carbon Dioxide and Water Atmospheres , 1999 .

[45]  V. Kharton,et al.  Research on the electrochemistry of oxygen ion conductors in the former Soviet Union. I. ZrO2-based ceramic materials , 1999 .

[46]  J. L. Gautier,et al.  Mixed valency spinel oxides of transition metals and electrocatalysis: case of the MnxCo3−xO4 system , 1998 .

[47]  Michael Modigell,et al.  Oxyfuel coal combustion by efficient integration of oxygen transport membranes , 2011 .

[48]  J. Irvine,et al.  Co-doping of scandia-zirconia electrolytes for SOFCs. , 2007, Faraday discussions.

[49]  Edward S. Rubin,et al.  Technical Documentation: Oxygen-based Combustion Systems (Oxyfuels) with Carbon Capture and Storage (CCS) , 2007 .

[50]  H. Yamada,et al.  The chemistry of ceramics , 1996 .