Adaptive Discontinuous Galerkin Method for Response-Excitation PDF Equations

Evolution equations of the joint response-excitation probability density function (REPDF) generalize the existing PDF evolution equations and enable us to compute the PDF of the solution of stochastic systems driven by colored random noise. This paper aims at developing an efficient numerical method for this evolution equation of REPDF by considering the response and excitation spaces separately. For the response space, a nonconforming adaptive discontinuous Galerkin method is used to resolve both local and discontinuous dynamics while a probabilistic collocation method is used for the excitation space. We propose two fundamentally different adaptive schemes for the response space using either the local variance combined with the boundary flux difference or using particle trajectories. The effectiveness of the proposed new algorithm is demonstrated in two prototype applications dealing with randomly forced nonlinear oscillators. We first study the stochastic pendulum problem and compare the resulting PDF ...

[1]  Prabhu Ramachandran,et al.  Approximate Riemann solvers for the Godunov SPH (GSPH) , 2014, J. Comput. Phys..

[2]  Daniele Venturi,et al.  Elsevier Editorial System(tm) for Journal of Computational Physics Manuscript Draft Title: New Evolution Equations for the Joint Response-excitation Probability Density Function of Stochastic Solutions to First-order Nonlinear Pdes New Evolution Equations for the Joint Response-excitation Probabilit , 2022 .

[3]  Daniele Venturi,et al.  Supercritical quasi-conduction states in stochastic Rayleigh–Bénard convection , 2012 .

[4]  Xiu Yang,et al.  Adaptive ANOVA decomposition of stochastic incompressible and compressible flows , 2012, J. Comput. Phys..

[5]  P. J. Morrison,et al.  A discontinuous Galerkin method for the Vlasov-Poisson system , 2010, J. Comput. Phys..

[6]  G. Athanassoulis,et al.  THE JOINT RESPONSE-EXCITATION PDF EVOLUTION EQUATION. NUMERICAL SOLUTIONS FOR THE LONG-TIME, STEAD-STATE RESPONSE OF A HALF OSCILLATOR , 2012 .

[7]  Daniele Venturi,et al.  DIFFERENTIAL CONSTRAINTS FOR THE PROBABILITY DENSITY FUNCTION OF STOCHASTIC SOLUTIONS TO THE WAVE EQUATION , 2012 .

[8]  G. Karniadakis,et al.  A computable evolution equation for the joint response-excitation probability density function of stochastic dynamical systems , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  Huiqing Zhang,et al.  Stochastic bifurcations in a bistable Duffing-Van der Pol oscillator with colored noise. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  D. Venturi A fully symmetric nonlinear biorthogonal decomposition theory for random fields , 2011 .

[11]  Chi-Wang Shu Discontinuous Galerkin Methods , 2010 .

[12]  Aiguo Song,et al.  Effect of colored noise on logical stochastic resonance in bistable dynamics. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Xiangxiong Zhang,et al.  On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes , 2010, J. Comput. Phys..

[14]  Francisco Chinesta,et al.  Recent Advances and New Challenges in the Use of the Proper Generalized Decomposition for Solving Multidimensional Models , 2010 .

[15]  A. Nouy Proper Generalized Decompositions and Separated Representations for the Numerical Solution of High Dimensional Stochastic Problems , 2010 .

[16]  Daniele Venturi,et al.  Stochastic bifurcation analysis of Rayleigh–Bénard convection , 2010, Journal of Fluid Mechanics.

[17]  George E. Karniadakis,et al.  Multi-element probabilistic collocation method in high dimensions , 2010, J. Comput. Phys..

[18]  G Bard Ermentrout,et al.  Dynamics of limit-cycle oscillators subject to general noise. , 2009, Physical review letters.

[19]  Canjun Wang Effects of colored noise on stochastic resonance in a tumor cell growth system , 2009 .

[20]  Timothy Nigel Phillips,et al.  On the solution of the Fokker–Planck equation using a high-order reduced basis approximation , 2009 .

[21]  Pierre F. J. Lermusiaux,et al.  Dynamically orthogonal field equations for continuous stochastic dynamical systems , 2009 .

[22]  Jianbing Chen,et al.  Stochastic Dynamics of Structures , 2009 .

[23]  R. F. Galán,et al.  Analytical calculation of the frequency shift in phase oscillators driven by colored noise: implications for electrical engineering and neuroscience. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Eric Darve,et al.  Computing generalized Langevin equations and generalized Fokker–Planck equations , 2009, Proceedings of the National Academy of Sciences.

[25]  S. Blanes,et al.  The Magnus expansion and some of its applications , 2008, 0810.5488.

[26]  Yanzhao Cao,et al.  International Journal of C 2009 Institute for Scientific Numerical Analysis and Modeling Computing and Information Anova Expansions and Efficient Sampling Methods for Parameter Dependent Nonlinear Pdes , 2022 .

[27]  S. M. Sadooghi-Alvandi,et al.  On the distribution of the sum of independent uniform random variables , 2009 .

[28]  Jianbing Chen,et al.  A note on the principle of preservation of probability and probability density evolution equation , 2009 .

[29]  Anthony Nouy,et al.  Generalized spectral decomposition for stochastic nonlinear problems , 2009, J. Comput. Phys..

[30]  George E. Karniadakis,et al.  The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications , 2008, J. Comput. Phys..

[31]  Daniele Venturi,et al.  Stochastic low-dimensional modelling of a random laminar wake past a circular cylinder , 2008, Journal of Fluid Mechanics.

[32]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[33]  Mechthild Thalhammer,et al.  High-Order Exponential Operator Splitting Methods for Time-Dependent Schrödinger Equations , 2008, SIAM J. Numer. Anal..

[34]  Gerassimos A. Athanassoulis,et al.  New partial differential equations governing the joint, response–excitation, probability distributions of nonlinear systems, under general stochastic excitation , 2008 .

[35]  Yoshisuke Ueda,et al.  Chaotic phase similarities and recurrences in a damped-driven Duffing oscillator. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Lyle J. Graham,et al.  Efficient evaluation of neuron populations receiving colored-noise current based on a refractory density method. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  P. Jung,et al.  Colored Noise in Dynamical Systems , 2007 .

[38]  René Lefever,et al.  Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology , 2007 .

[39]  R. Mankin,et al.  Colored-noise-induced Hopf bifurcations in predator-prey communities. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Daniele Venturi,et al.  On proper orthogonal decomposition of randomly perturbed fields with applications to flow past a cylinder and natural convection over a horizontal plate , 2006, Journal of Fluid Mechanics.

[41]  G. Karniadakis,et al.  Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..

[42]  M. Griebel Sparse Grids and Related Approximation Schemes for Higher Dimensional Problems , 2006 .

[43]  Moshe Gitterman,et al.  The noisy oscillator : the first hundred years, from Einstein until now , 2005 .

[44]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[45]  André I. Khuri,et al.  Applications of Dirac's delta function in statistics , 2004 .

[46]  L. Arnold Random Dynamical Systems , 2003 .

[47]  Jean-François Remacle,et al.  An Adaptive Discontinuous Galerkin Technique with an Orthogonal Basis Applied to Compressible Flow Problems , 2003, SIAM Rev..

[48]  George E. Karniadakis,et al.  Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation , 2002, J. Sci. Comput..

[49]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[50]  Zhenkun Huang,et al.  Effect of bounded noise on chaotic motion of duffing oscillator under parametric excitation , 2001 .

[51]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[52]  A J Chorin,et al.  Optimal prediction and the Mori-Zwanzig representation of irreversible processes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[53]  K. Ritter,et al.  Simple Cubature Formulas with High Polynomial Exactness , 1999 .

[54]  R. Kanwal Generalized Functions: Theory and Technique , 1998 .

[55]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[56]  J. Oden,et al.  hp-Version discontinuous Galerkin methods for hyperbolic conservation laws , 1996 .

[57]  Y. Saad Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .

[58]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[59]  P. McClintock,et al.  Noise in nonlinear dynamical systems. volume 1. theory of continuous Fokker-Planck systems. , 1989 .

[60]  P. Hänggi Noise in nonlinear dynamical systems: Colored noise in continuous dynamical systems: a functional calculus approach , 1989 .

[61]  Moss,et al.  Spectral density of fluctuations of a double-well Duffing oscillator driven by white noise. , 1988, Physical review. A, General physics.

[62]  Z. J. Yang,et al.  Experimental study of chaos in a driven pendulum , 1987 .

[63]  Jung,et al.  Dynamical systems: A unified colored-noise approximation. , 1987, Physical review. A, General physics.

[64]  R. Aris First-order partial differential equations , 1987 .

[65]  Fox,et al.  Functional-calculus approach to stochastic differential equations. , 1986, Physical review. A, General physics.

[66]  J. Elgin The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .

[67]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[68]  B. Huberman,et al.  Chaotic states and routes to chaos in the forced pendulum , 1982 .

[69]  R. G. Medhurst,et al.  Topics in the Theory of Random Noise , 1969 .

[70]  T. Lundgren Distribution Functions in the Statistical Theory of Turbulence , 1967 .